Comparative layer-wise analysis of self-supervised speech models
- URL: http://arxiv.org/abs/2211.03929v1
- Date: Tue, 8 Nov 2022 00:59:05 GMT
- Title: Comparative layer-wise analysis of self-supervised speech models
- Authors: Ankita Pasad, Bowen Shi, Karen Livescu
- Abstract summary: We measure acoustic, phonetic, and word-level properties encoded in individual layers, using a lightweight analysis tool based on canonical correlation analysis (CCA)
We find that these properties evolve across layers differently depending on the model, and the variations relate to the choice of pre-training objective.
We discover that CCA trends provide reliable guidance to choose layers of interest for downstream tasks and that single-layer performance often matches or improves upon using all layers, suggesting implications for more efficient use of pre-trained models.
- Score: 29.258085176788097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many self-supervised speech models, varying in their pre-training objective,
input modality, and pre-training data, have been proposed in the last few
years. Despite impressive empirical successes on downstream tasks, we still
have a limited understanding of the properties encoded by the models and the
differences across models. In this work, we examine the intermediate
representations for a variety of recent models. Specifically, we measure
acoustic, phonetic, and word-level properties encoded in individual layers,
using a lightweight analysis tool based on canonical correlation analysis
(CCA). We find that these properties evolve across layers differently depending
on the model, and the variations relate to the choice of pre-training
objective. We further investigate the utility of our analyses for downstream
tasks by comparing the property trends with performance on speech recognition
and spoken language understanding tasks. We discover that CCA trends provide
reliable guidance to choose layers of interest for downstream tasks and that
single-layer performance often matches or improves upon using all layers,
suggesting implications for more efficient use of pre-trained models.
Related papers
- Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Competence-Based Analysis of Language Models [21.43498764977656]
CALM (Competence-based Analysis of Language Models) is designed to investigate LLM competence in the context of specific tasks.
We develop a new approach for performing causal probing interventions using gradient-based adversarial attacks.
We carry out a case study of CALM using these interventions to analyze and compare LLM competence across a variety of lexical inference tasks.
arXiv Detail & Related papers (2023-03-01T08:53:36Z) - On the Compositional Generalization Gap of In-Context Learning [73.09193595292233]
We look at the gap between the in-distribution (ID) and out-of-distribution (OOD) performance of such models in semantic parsing tasks with in-context learning.
We evaluate four model families, OPT, BLOOM, CodeGen and Codex on three semantic parsing datasets.
arXiv Detail & Related papers (2022-11-15T19:56:37Z) - Assessing Out-of-Domain Language Model Performance from Few Examples [38.245449474937914]
We address the task of predicting out-of-domain (OOD) performance in a few-shot fashion.
We benchmark the performance on this task when looking at model accuracy on the few-shot examples.
We show that attribution-based factors can help rank relative model OOD performance.
arXiv Detail & Related papers (2022-10-13T04:45:26Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis [90.24921443175514]
We focus on aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
We propose to reformulate the extraction and prediction tasks into the sequence generation task, using a generative language model with unidirectional attention.
Our approach outperforms the previous state-of-the-art (based on BERT) on average performance by a large margins in few-shot and full-shot settings.
arXiv Detail & Related papers (2022-04-11T18:31:53Z) - Layer-wise Analysis of a Self-supervised Speech Representation Model [26.727775920272205]
Self-supervised learning approaches have been successful for pre-training speech representation models.
Not much has been studied about the type or extent of information encoded in the pre-trained representations themselves.
arXiv Detail & Related papers (2021-07-10T02:13:25Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - A Framework to Learn with Interpretation [2.3741312212138896]
We present a novel framework to jointly learn a predictive model and its associated interpretation model.
We seek for a small-size dictionary of high level attribute functions that take as inputs the outputs of selected hidden layers.
A detailed pipeline to visualize the learnt features is also developed.
arXiv Detail & Related papers (2020-10-19T09:26:28Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.