論文の概要: A Unified Feature Representation for Lexical Connotations
- arxiv url: http://arxiv.org/abs/2006.00635v2
- Date: Mon, 1 Mar 2021 14:14:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 12:49:08.091129
- Title: A Unified Feature Representation for Lexical Connotations
- Title(参考訳): 語彙表現のための一意的特徴表現
- Authors: Emily Allaway and Kathleen McKeown
- Abstract要約: 我々は、名詞や形容詞の意味を表す新しい語彙資源を作成するために、遠隔ラベリングを使用する。
我々の分析によると、それは人間の判断とよく一致している。
- 参考スコア(独自算出の注目度): 13.153001795077227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ideological attitudes and stance are often expressed through subtle meanings
of words and phrases. Understanding these connotations is critical to
recognizing the cultural and emotional perspectives of the speaker. In this
paper, we use distant labeling to create a new lexical resource representing
connotation aspects for nouns and adjectives. Our analysis shows that it aligns
well with human judgments. Additionally, we present a method for creating
lexical representations that captures connotations within the embedding space
and show that using the embeddings provides a statistically significant
improvement on the task of stance detection when data is limited.
- Abstract(参考訳): 思想的態度や姿勢は、しばしば言葉や句の微妙な意味を通して表現される。
これらの意味を理解することは、話者の文化的、感情的な視点を理解する上で重要である。
本稿では,名詞や形容詞の意味を表す新しい語彙資源を作成するために,遠隔ラベリングを用いる。
我々の分析によると、それは人間の判断とよく一致している。
さらに,埋め込み空間内の含意をキャプチャする語彙表現を作成する手法を提案し,データ制限時の姿勢検出のタスクにおいて統計的に有意な改善をもたらすことを示す。
関連論文リスト
- Explaining Representation Learning with Perceptual Components [14.10876324116018]
自己教師付きモデルは明確な意味を持たない表現空間を作成する。
色,形状,テクスチャという3つの重要な知覚成分を用いて表現空間を解析する新しい手法を提案する。
我々のアプローチは表現空間の解釈可能性を高め、人間の視覚的知覚に共鳴する説明を提供する。
論文 参考訳(メタデータ) (2024-06-11T04:08:37Z) - Quantifying the redundancy between prosody and text [67.07817268372743]
我々は大きな言語モデルを用いて、韻律と単語自体の間にどれだけの情報が冗長であるかを推定する。
単語が持つ情報と韻律情報の間には,複数の韻律的特徴にまたがる高い冗長性が存在する。
それでも、韻律的特徴はテキストから完全には予測できないことが観察され、韻律は単語の上下に情報を運ぶことが示唆された。
論文 参考訳(メタデータ) (2023-11-28T21:15:24Z) - Distributed Marker Representation for Ambiguous Discourse Markers and
Entangled Relations [50.31129784616845]
我々は、無制限の談話マーカーデータと潜在談話感覚を利用して分散マーカ表現(DMR)を学習する。
提案手法は,対話マーカー間の複雑なあいまいさや絡み合いや,手動で定義した談話関係を理解する上でも有用である。
論文 参考訳(メタデータ) (2023-06-19T00:49:51Z) - Adverbs, Surprisingly [1.9075820340282936]
計算言語学では副詞が無視されていることを示す。
単語の意味を特徴付けるために Frame Semantics を用いることで,アドバーブ解析に有望なアプローチが提案される。
論文 参考訳(メタデータ) (2023-05-31T08:30:08Z) - Natural Language Decompositions of Implicit Content Enable Better Text
Representations [56.85319224208865]
本稿では,暗黙的に伝達されたコンテンツを明示的に考慮したテキスト分析手法を提案する。
我々は大きな言語モデルを用いて、観察されたテキストと推論的に関係する命題の集合を生成する。
本研究は,NLPにおいて,文字のみではなく,観察された言語の背景にある意味をモデル化することが重要であることを示唆する。
論文 参考訳(メタデータ) (2023-05-23T23:45:20Z) - Neighboring Words Affect Human Interpretation of Saliency Explanations [65.29015910991261]
単語レベルのサリエンシの説明は、しばしばテキストベースのモデルで特徴属性を伝えるために使われる。
近年の研究では、単語の長さなどの表面的要因が、コミュニケーションされたサリエンシスコアの人間の解釈を歪めてしまうことが報告されている。
本研究では,単語の近傍にある単語のマーキングが,その単語の重要性に対する説明者の認識にどのように影響するかを検討する。
論文 参考訳(メタデータ) (2023-05-04T09:50:25Z) - Shades of meaning: Uncovering the geometry of ambiguous word
representations through contextualised language models [6.760960482418417]
語彙的曖昧さは言語科学に深く永続的な挑戦をもたらす。
我々の研究は、一連のシミュレーションを通して、語彙的あいまいさの心理的理解に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2023-04-26T14:47:38Z) - Lost in Context? On the Sense-wise Variance of Contextualized Word
Embeddings [11.475144702935568]
各単語感覚の文脈的埋め込みが、典型的な事前学習モデルにおける文脈によってどの程度異なるかを定量化する。
単語表現は位置バイアスを受けており、異なる文脈における最初の単語はより類似する傾向にある。
論文 参考訳(メタデータ) (2022-08-20T12:27:25Z) - Latent Topology Induction for Understanding Contextualized
Representations [84.7918739062235]
本研究では,文脈的埋め込みの表現空間について検討し,大規模言語モデルの隠れトポロジについて考察する。
文脈化表現の言語特性を要約した潜在状態のネットワークが存在することを示す。
論文 参考訳(メタデータ) (2022-06-03T11:22:48Z) - Aspectuality Across Genre: A Distributional Semantics Approach [25.816944882581343]
英語における動詞の語彙的側面の解釈は、文的含意を認識し、談話レベルの推論を学ぶ上で重要な役割を担っている。
アスペクト型クラス,状態対イベント,およびテクスチャ対テイリック事象の2つの基本次元を分散意味論で効果的にモデル化できることが示される。
論文 参考訳(メタデータ) (2020-10-31T19:37:22Z) - On Vocabulary Reliance in Scene Text Recognition [79.21737876442253]
ボキャブラリ内の単語を持つ画像に対して、手法は良好に機能するが、ボキャブラリ外の単語を持つ画像にはあまり一般化しない。
私たちはこの現象を「語彙依存」と呼んでいる。
本研究では,2家族のモデルが協調的に学習できるようにするための,シンプルで効果的な相互学習戦略を提案する。
論文 参考訳(メタデータ) (2020-05-08T11:16:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。