G-IDS: Generative Adversarial Networks Assisted Intrusion Detection
System
- URL: http://arxiv.org/abs/2006.00676v1
- Date: Mon, 1 Jun 2020 02:42:46 GMT
- Title: G-IDS: Generative Adversarial Networks Assisted Intrusion Detection
System
- Authors: Md Hasan Shahriar, Nur Imtiazul Haque, Mohammad Ashiqur Rahman, and
Miguel Alonso Jr
- Abstract summary: We propose a generative adversarial network (GAN) based intrusion detection system (G-IDS)
G-IDS generates synthetic samples, and IDS gets trained on them along with the original ones.
We find that our proposed G-IDS model performs much better in attack detection and model stabilization during the training process than a standalone IDS.
- Score: 1.5119440099674917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The boundaries of cyber-physical systems (CPS) and the Internet of Things
(IoT) are converging together day by day to introduce a common platform on
hybrid systems. Moreover, the combination of artificial intelligence (AI) with
CPS creates a new dimension of technological advancement. All these
connectivity and dependability are creating massive space for the attackers to
launch cyber attacks. To defend against these attacks, intrusion detection
system (IDS) has been widely used. However, emerging CPS technologies suffer
from imbalanced and missing sample data, which makes the training of IDS
difficult. In this paper, we propose a generative adversarial network (GAN)
based intrusion detection system (G-IDS), where GAN generates synthetic
samples, and IDS gets trained on them along with the original ones. G-IDS also
fixes the difficulties of imbalanced or missing data problems. We model a
network security dataset for an emerging CPS using NSL KDD-99 dataset and
evaluate our proposed model's performance using different metrics. We find that
our proposed G-IDS model performs much better in attack detection and model
stabilization during the training process than a standalone IDS.
Related papers
- Redefining DDoS Attack Detection Using A Dual-Space Prototypical Network-Based Approach [38.38311259444761]
We introduce a new deep learning-based technique for detecting DDoS attacks.
We propose a new dual-space prototypical network that leverages a unique dual-space loss function.
This approach capitalizes on the strengths of representation learning within the latent space.
arXiv Detail & Related papers (2024-06-04T03:22:52Z) - Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
We propose a novel approach for enhancing the performance of an NIDS through the integration of Generative Adversarial Networks (GANs)
GANs generate synthetic network traffic data that closely mimics real-world network behavior.
Our findings show that the integration of GANs into NIDS can lead to enhancements in intrusion detection performance for attacks with limited training data.
arXiv Detail & Related papers (2024-04-11T04:01:15Z) - usfAD Based Effective Unknown Attack Detection Focused IDS Framework [3.560574387648533]
Internet of Things (IoT) and Industrial Internet of Things (IIoT) have led to an increasing range of cyber threats.
For more than a decade, researchers have delved into supervised machine learning techniques to develop Intrusion Detection System (IDS)
IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks.
We propose two strategies for semi-supervised learning based IDS where training samples of attacks are not required.
arXiv Detail & Related papers (2024-03-17T11:49:57Z) - Multiclass Classification Procedure for Detecting Attacks on MQTT-IoT
Protocol [0.0]
Intrusion detection systems (IDS) are used to protect IoT systems from the various anomalies and attacks at the network level.
Our work focuses on creating classification models that can feed an IDS using a dataset containing frames under attacks of an IoT system.
arXiv Detail & Related papers (2024-02-05T18:27:46Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - DRL-GAN: A Hybrid Approach for Binary and Multiclass Network Intrusion
Detection [2.7122540465034106]
Intrusion detection systems (IDS) are an essential security technology for detecting these attacks.
We implement a novel hybrid technique using synthetic data produced by a Generative Adversarial Network (GAN) to use as input for training a Deep Reinforcement Learning (DRL) model.
Our findings demonstrate that training the DRL on specific synthetic datasets can result in better performance in correctly classifying minority classes over training on the true imbalanced dataset.
arXiv Detail & Related papers (2023-01-05T19:51:24Z) - RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency
IoT systems [41.1371349978643]
We present an approach that targets the security of collaborative deep inference via re-thinking the distribution strategy.
We formulate this methodology, as an optimization, where we establish a trade-off between the latency of co-inference and the privacy-level of data.
arXiv Detail & Related papers (2022-08-27T14:50:00Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
We present TANTRA, a novel end-to-end Timing-based Adversarial Network Traffic Reshaping Attack.
Our evasion attack utilizes a long short-term memory (LSTM) deep neural network (DNN) which is trained to learn the time differences between the target network's benign packets.
TANTRA achieves an average success rate of 99.99% in network intrusion detection system evasion.
arXiv Detail & Related papers (2021-03-10T19:03:38Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z) - Data Mining with Big Data in Intrusion Detection Systems: A Systematic
Literature Review [68.15472610671748]
Cloud computing has become a powerful and indispensable technology for complex, high performance and scalable computation.
The rapid rate and volume of data creation has begun to pose significant challenges for data management and security.
The design and deployment of intrusion detection systems (IDS) in the big data setting has, therefore, become a topic of importance.
arXiv Detail & Related papers (2020-05-23T20:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.