Nonlinear entanglement growth in inhomogeneous spacetimes
- URL: http://arxiv.org/abs/2006.00799v3
- Date: Mon, 12 Oct 2020 10:56:24 GMT
- Title: Nonlinear entanglement growth in inhomogeneous spacetimes
- Authors: Arkadiusz Kosior, Markus Heyl
- Abstract summary: Entment has become central for the characterization of quantum matter both in and out of equilibrium.
We study entanglement dynamics both for the case of noninteracting fermions, allowing for exact numerical solutions, and for random unitary circuits representing a paradigmatic class of ergodic systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement has become central for the characterization of quantum matter
both in and out of equilibrium. In a dynamical context entanglement exhibits
universal linear temporal growth in generic systems, which stems from the
underlying linear light cones as they occur in planar geometries. Inhomogeneous
spacetimes can lead, however, to strongly bent trajectories. While such bent
trajectories crucially impact correlation spreading and therefore the
light-cone structure, it has remained elusive how this influences the
entanglement dynamics. In this work we investigate the real-time evolution of
the entanglement entropy in one-dimensional quantum systems after quenches
which change the underlying spacetime background of the Hamiltonian.
Concretely, we focus on the Rindler space describing the spacetime in close
vicinity to a black hole. As a main result we find that entanglement grows
sublinearly in a generic fashion both for interacting and noninteracting
quantum matter. We further observe that the asymptotic relaxation becomes
exponential, as opposed to algebraic for planar Minkowski spacetimes, and that
in the vicinity of the black hole the relaxation time for large subsystems
becomes independent of the subsystem size. We study entanglement dynamics both
for the case of noninteracting fermions, allowing for exact numerical
solutions, and for random unitary circuits representing a paradigmatic class of
ergodic systems.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Exactly solvable non-unitary time evolution in quantum critical systems I: Effect of complex spacetime metrics [0.0]
We study exactly solvable non-unitary time evolutions in one-dimensional quantum critical systems.
In this work, we study the universal features of such non-unitary time evolutions based on exactly solvable setups.
arXiv Detail & Related papers (2024-06-24T18:19:10Z) - Scrambling Transition in Free Fermion Systems Induced by a Single
Impurity [7.11602492803827]
In quantum many-body systems, interactions play a crucial role in the emergence of information scrambling.
We show an escape-to-scrambling transition when tuning the interaction strength for fermions in three dimensions.
Our predictions are validated using both a Brownian circuit with a single Majorana fermion per site and a solvable Brownian SYK model with a large local Hilbert space dimension.
arXiv Detail & Related papers (2024-03-06T04:46:17Z) - Emergent geometric phase in time-dependent noncommutative quantum system [0.0]
We have given a systematic way to formulate non-relativistic quantum mechanics on 1+1 dimensional NC space-time.
Although the effect of noncommutativity of space-time should presumably become significant at a very high energy scale, it is intriguing to speculate that there should be some relics of the effects of quantum space-time even in a low-energy regime.
arXiv Detail & Related papers (2023-06-14T12:29:08Z) - Temporal Entanglement in Chaotic Quantum Circuits [62.997667081978825]
The concept of space-evolution (or space-time duality) has emerged as a promising approach for studying quantum dynamics.
We show that temporal entanglement always follows a volume law in time.
This unexpected structure in the temporal entanglement spectrum might be the key to an efficient computational implementation of the space evolution.
arXiv Detail & Related papers (2023-02-16T18:56:05Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Continuous percolation in a Hilbert space for a large system of qubits [58.720142291102135]
The percolation transition is defined through the appearance of the infinite cluster.
We show that the exponentially increasing dimensionality of the Hilbert space makes its covering by finite-size hyperspheres inefficient.
Our approach to the percolation transition in compact metric spaces may prove useful for its rigorous treatment in other contexts.
arXiv Detail & Related papers (2022-10-15T13:53:21Z) - Dynamical scaling symmetry and asymptotic quantum correlations for
time-dependent scalar fields [0.0]
In time-independent quantum systems, entanglement entropy possesses an inherent scaling symmetry that the energy of the system does not have.
We show that such systems have dynamical scaling symmetry that leaves the evolution of various measures of quantum correlations invariant.
arXiv Detail & Related papers (2022-05-26T13:20:46Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Exact quench dynamics of symmetry resolved entanglement in a free
fermion chain [0.0]
We study the time evolution of the symmetry resolved entanglement in free fermion systems.
Both entanglement entropies and mutual information show effective equipartition in the scaling limit of large time and subsystem size.
We argue that the behaviour of the charged entropies can be quantitatively understood in the framework of the quasiparticle picture for the spreading of entanglement.
arXiv Detail & Related papers (2021-06-24T15:50:27Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.