Exactly solvable non-unitary time evolution in quantum critical systems I: Effect of complex spacetime metrics
- URL: http://arxiv.org/abs/2406.17059v2
- Date: Mon, 29 Jul 2024 14:21:53 GMT
- Title: Exactly solvable non-unitary time evolution in quantum critical systems I: Effect of complex spacetime metrics
- Authors: Xueda Wen,
- Abstract summary: We study exactly solvable non-unitary time evolutions in one-dimensional quantum critical systems.
In this work, we study the universal features of such non-unitary time evolutions based on exactly solvable setups.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this series of works, we study exactly solvable non-unitary time evolutions in one-dimensional quantum critical systems ranging from quantum quenches to time-dependent drivings. In this part I, we are motivated by the recent works of Kontsevich and Segal [1] and Witten [2] on allowable complex spacetime metrics in quantum field theories. In general, such complex spacetime metrics will lead to non-unitary time evolutions. In this work, we study the universal features of such non-unitary time evolutions based on exactly solvable setups. Various physical quantities including entanglement Hamiltonian and entanglement spectrum, entanglement entropy, and energy density at an arbitrary time can be exactly solved. Due to the damping effect introduced by the complex time, the excitations in the initial state are gradually damped out in time. The non-equilibrium dynamics exhibits universal features that are qualitatively different from the case of real-time evolutions. For instance, for an infinite system after a global quench, the entanglement entropy of the semi-infinite subsystem will grow logarithmically in time, in contrast to the linear growth in a real-time evolution. Moreover, we study numerically the time-dependent driven quantum critical systems with allowable complex spacetime metrics. It is found that the competition between driving and damping leads to a steady state with an interesting entanglement structure.
Related papers
- Quantum fluctuation theorem in a curved spacetime [0.0]
We report a fully general relativistic detailed quantum fluctuation theorem based on the two point measurement scheme.
We demonstrate how the spacetime curvature can produce entropy in a localized quantum system moving in a general spacetime.
arXiv Detail & Related papers (2024-05-06T23:16:50Z) - Applicability of mean-field theory for time-dependent open quantum systems with infinite-range interactions [0.0]
We show that mean-field theory is applicable to time-dependent infinite-range interacting systems.
We provide bounds for finite-size effects and their dependence on the evolution time.
arXiv Detail & Related papers (2024-03-25T20:24:30Z) - Insights of quantum time into quantum evolution [0.0]
We show the correlation between the novel time-system entanglement and the conventional internal entanglement of a system with two entangled qubits.
For both cases, we show the dependence of time-system entanglement entropy on the distance of evolution.
arXiv Detail & Related papers (2023-06-20T16:53:30Z) - Temporal Entanglement in Chaotic Quantum Circuits [62.997667081978825]
The concept of space-evolution (or space-time duality) has emerged as a promising approach for studying quantum dynamics.
We show that temporal entanglement always follows a volume law in time.
This unexpected structure in the temporal entanglement spectrum might be the key to an efficient computational implementation of the space evolution.
arXiv Detail & Related papers (2023-02-16T18:56:05Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Metastable discrete time-crystal resonances in a dissipative central
spin system [0.0]
Generalizing the theory of metastability in open quantum systems, we develop an effective description for the evolution within a long-lived metastable subspace.
Our study links to timely questions concerning emergent collective behavior in the 'prethermal' stage of a dissipative quantum many-body evolution.
arXiv Detail & Related papers (2022-05-23T12:27:09Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Nonlinear entanglement growth in inhomogeneous spacetimes [0.0]
Entment has become central for the characterization of quantum matter both in and out of equilibrium.
We study entanglement dynamics both for the case of noninteracting fermions, allowing for exact numerical solutions, and for random unitary circuits representing a paradigmatic class of ergodic systems.
arXiv Detail & Related papers (2020-06-01T08:58:26Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.