Scrambling Transition in Free Fermion Systems Induced by a Single
Impurity
- URL: http://arxiv.org/abs/2403.03457v1
- Date: Wed, 6 Mar 2024 04:46:17 GMT
- Title: Scrambling Transition in Free Fermion Systems Induced by a Single
Impurity
- Authors: Qucheng Gao, Tianci Zhou, Pengfei Zhang, Xiao Chen
- Abstract summary: In quantum many-body systems, interactions play a crucial role in the emergence of information scrambling.
We show an escape-to-scrambling transition when tuning the interaction strength for fermions in three dimensions.
Our predictions are validated using both a Brownian circuit with a single Majorana fermion per site and a solvable Brownian SYK model with a large local Hilbert space dimension.
- Score: 7.11602492803827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum many-body systems, interactions play a crucial role in the
emergence of information scrambling. When particles interact throughout the
system, the entanglement between them can lead to a rapid and chaotic spreading
of quantum information, typically probed by the growth in operator size in the
Heisenberg picture. In this study, we explore whether the operator undergoes
scrambling when particles interact solely through a single impurity in generic
spatial dimensions, focusing on fermion systems with spatial and temporal
random hoppings. By connecting the dynamics of the operator to the symmetric
exclusion process with a source term, we demonstrate the presence of an
escape-to-scrambling transition when tuning the interaction strength for
fermions in three dimensions. As a comparison, systems in lower dimensions are
proven to scramble at arbitrarily weak interactions unless the hopping becomes
sufficiently long-ranged. Our predictions are validated using both a Brownian
circuit with a single Majorana fermion per site and a solvable Brownian SYK
model with a large local Hilbert space dimension. This suggests the
universality of the theoretical picture for free fermion systems with spatial
and temporal randomness.
Related papers
- Entanglement Transition due to particle losses in a monitored fermionic chain [0.0]
We study the dynamics of the entanglement entropy under quantum jumps that induce local particle losses in a model of free fermions hopping.
We show that by tuning the system parameters, a measurement-induced entanglement transition occurs where the entanglement entropy scaling changes from logarithmic to area-law.
arXiv Detail & Related papers (2024-08-07T11:30:09Z) - Information Scrambling in Free Fermion Systems with a Sole Interaction [7.11602492803827]
We construct Brownian circuits and Clifford circuits consisting of a free fermion hopping term and a sole interaction.
In both circuits, our findings reveal the emergence of operator scrambling.
We demonstrate that in the one-dimensional system, both the operator and entanglement exhibit diffusive scaling.
arXiv Detail & Related papers (2023-10-10T22:11:38Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Fate of entanglement in one-dimensional fermion liquid with coherent
particle loss [2.5081221761654757]
We study the dynamic properties of a one-dimensional fermionic system with adjacent-lattice particle loss.
Our findings provide valuable insights for near-term quantum devices and the quantum simulation of open systems.
arXiv Detail & Related papers (2021-12-27T07:24:33Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - How Dynamical Quantum Memories Forget [0.2578242050187029]
We show that a quantum error correcting code can be generated by hybrid dynamics of unitaries and measurements.
In particular, a volume law phase for the entanglement entropy cannot be sustained in a free fermion system.
arXiv Detail & Related papers (2020-08-24T18:00:03Z) - Nonlinear entanglement growth in inhomogeneous spacetimes [0.0]
Entment has become central for the characterization of quantum matter both in and out of equilibrium.
We study entanglement dynamics both for the case of noninteracting fermions, allowing for exact numerical solutions, and for random unitary circuits representing a paradigmatic class of ergodic systems.
arXiv Detail & Related papers (2020-06-01T08:58:26Z) - Feynman Propagator for a System of Interacting Scalar Particles in the
Fokker Theory [62.997667081978825]
The functional integral on the generalized phase space is defined as the initial one in quantum theory.
The measure of integration in the generalized configuration space of world particle lines is determined.
A modification of the propagator is proposed, in which the role of independent time parameters is taken by the time coordinates of the particles in Minkowski space.
arXiv Detail & Related papers (2020-02-10T09:09:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.