Sarcasm Detection using Context Separators in Online Discourse
- URL: http://arxiv.org/abs/2006.00850v1
- Date: Mon, 1 Jun 2020 10:52:35 GMT
- Title: Sarcasm Detection using Context Separators in Online Discourse
- Authors: Kartikey Pant and Tanvi Dadu
- Abstract summary: Sarcasm is an intricate form of speech, where meaning is conveyed implicitly.
In this work, we use RoBERTa_large to detect sarcasm in two datasets.
We also assert the importance of context in improving the performance of contextual word embedding models.
- Score: 3.655021726150369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sarcasm is an intricate form of speech, where meaning is conveyed implicitly.
Being a convoluted form of expression, detecting sarcasm is an assiduous
problem. The difficulty in recognition of sarcasm has many pitfalls, including
misunderstandings in everyday communications, which leads us to an increasing
focus on automated sarcasm detection. In the second edition of the Figurative
Language Processing (FigLang 2020) workshop, the shared task of sarcasm
detection released two datasets, containing responses along with their context
sampled from Twitter and Reddit.
In this work, we use RoBERTa_large to detect sarcasm in both the datasets. We
further assert the importance of context in improving the performance of
contextual word embedding based models by using three different types of inputs
- Response-only, Context-Response, and Context-Response (Separated). We show
that our proposed architecture performs competitively for both the datasets. We
also show that the addition of a separation token between context and target
response results in an improvement of 5.13% in the F1-score in the Reddit
dataset.
Related papers
- KoCoSa: Korean Context-aware Sarcasm Detection Dataset [3.369750569233713]
Sarcasm is a way of verbal irony where someone says the opposite of what they mean, often to ridicule a person, situation, or idea.
In this paper, we introduce a new dataset for the Korean dialogue sarcasm detection task, KoCoSa.
The dataset consists of 12.8K daily Korean dialogues and the labels for this task on the last response.
arXiv Detail & Related papers (2024-02-22T10:17:57Z) - Sentiment-enhanced Graph-based Sarcasm Explanation in Dialogue [67.09698638709065]
We propose a novel sEntiment-enhanceD Graph-based multimodal sarcasm Explanation framework, named EDGE.
In particular, we first propose a lexicon-guided utterance sentiment inference module, where a utterance sentiment refinement strategy is devised.
We then develop a module named Joint Cross Attention-based Sentiment Inference (JCA-SI) by extending the multimodal sentiment analysis model JCA to derive the joint sentiment label for each video-audio clip.
arXiv Detail & Related papers (2024-02-06T03:14:46Z) - Sarcasm Detection in a Disaster Context [103.93691731605163]
We introduce HurricaneSARC, a dataset of 15,000 tweets annotated for intended sarcasm.
Our best model is able to obtain as much as 0.70 F1 on our dataset.
arXiv Detail & Related papers (2023-08-16T05:58:12Z) - Sarcasm Detection Framework Using Emotion and Sentiment Features [62.997667081978825]
We propose a model which incorporates emotion and sentiment features to capture the incongruity intrinsic to sarcasm.
Our approach achieved state-of-the-art results on four datasets from social networking platforms and online media.
arXiv Detail & Related papers (2022-11-23T15:14:44Z) - How to Describe Images in a More Funny Way? Towards a Modular Approach
to Cross-Modal Sarcasm Generation [62.89586083449108]
We study a new problem of cross-modal sarcasm generation (CMSG), i.e., generating a sarcastic description for a given image.
CMSG is challenging as models need to satisfy the characteristics of sarcasm, as well as the correlation between different modalities.
We propose an Extraction-Generation-Ranking based Modular method (EGRM) for cross-model sarcasm generation.
arXiv Detail & Related papers (2022-11-20T14:38:24Z) - Computational Sarcasm Analysis on Social Media: A Systematic Review [0.23488056916440855]
Sarcasm can be defined as saying or writing the opposite of what one truly wants to express, usually to insult, irritate, or amuse someone.
Because of the obscure nature of sarcasm in textual data, detecting it is difficult and of great interest to the sentiment analysis research community.
arXiv Detail & Related papers (2022-09-13T17:20:19Z) - Sarcasm Detection in Twitter -- Performance Impact when using Data
Augmentation: Word Embeddings [0.0]
Sarcasm is the use of words usually used to either mock or annoy someone, or for humorous purposes.
We propose a contextual model for sarcasm identification in twitter using RoBERTa and augmenting the dataset.
We achieve performance gain by 3.2% in the iSarcasm dataset when using data augmentation to increase 20% of data labeled as sarcastic.
arXiv Detail & Related papers (2021-08-23T04:24:12Z) - Bi-ISCA: Bidirectional Inter-Sentence Contextual Attention Mechanism for
Detecting Sarcasm in User Generated Noisy Short Text [8.36639545285691]
This paper proposes a new state-of-the-art deep learning architecture that uses a novel Bidirectional Inter-Sentence Contextual Attention mechanism (Bi-ISCA)
Bi-ISCA captures inter-sentence dependencies for detecting sarcasm in the user-generated short text using only the conversational context.
The proposed deep learning model demonstrates the capability to capture explicit, implicit, and contextual incongruous words & phrases responsible for invoking sarcasm.
arXiv Detail & Related papers (2020-11-23T15:24:27Z) - Augmenting Data for Sarcasm Detection with Unlabeled Conversation
Context [55.898436183096614]
We present a novel data augmentation technique, CRA (Contextual Response Augmentation), which utilizes conversational context to generate meaningful samples for training.
Specifically, our proposed model, trained with the proposed data augmentation technique, participated in the sarcasm detection task of FigLang2020, have won and achieves the best performance in both Reddit and Twitter datasets.
arXiv Detail & Related papers (2020-06-11T09:00:11Z) - $R^3$: Reverse, Retrieve, and Rank for Sarcasm Generation with
Commonsense Knowledge [51.70688120849654]
We propose an unsupervised approach for sarcasm generation based on a non-sarcastic input sentence.
Our method employs a retrieve-and-edit framework to instantiate two major characteristics of sarcasm.
arXiv Detail & Related papers (2020-04-28T02:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.