Computational Sarcasm Analysis on Social Media: A Systematic Review
- URL: http://arxiv.org/abs/2209.06170v1
- Date: Tue, 13 Sep 2022 17:20:19 GMT
- Title: Computational Sarcasm Analysis on Social Media: A Systematic Review
- Authors: Faria Binte Kader, Nafisa Hossain Nujat, Tasmia Binte Sogir, Mohsinul
Kabir, Hasan Mahmud, Kamrul Hasan
- Abstract summary: Sarcasm can be defined as saying or writing the opposite of what one truly wants to express, usually to insult, irritate, or amuse someone.
Because of the obscure nature of sarcasm in textual data, detecting it is difficult and of great interest to the sentiment analysis research community.
- Score: 0.23488056916440855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sarcasm can be defined as saying or writing the opposite of what one truly
wants to express, usually to insult, irritate, or amuse someone. Because of the
obscure nature of sarcasm in textual data, detecting it is difficult and of
great interest to the sentiment analysis research community. Though the
research in sarcasm detection spans more than a decade, some significant
advancements have been made recently, including employing unsupervised
pre-trained transformers in multimodal environments and integrating context to
identify sarcasm. In this study, we aim to provide a brief overview of recent
advancements and trends in computational sarcasm research for the English
language. We describe relevant datasets, methodologies, trends, issues,
challenges, and tasks relating to sarcasm that are beyond detection. Our study
provides well-summarized tables of sarcasm datasets, sarcastic features and
their extraction methods, and performance analysis of various approaches which
can help researchers in related domains understand current state-of-the-art
practices in sarcasm detection.
Related papers
- A Survey of Multimodal Sarcasm Detection [32.659528422756416]
Sarcasm is a rhetorical device that is used to convey the opposite of the literal meaning of an utterance.
We present the first comprehensive survey on multimodal sarcasm detection to date.
arXiv Detail & Related papers (2024-10-24T16:17:47Z) - Sentiment-enhanced Graph-based Sarcasm Explanation in Dialogue [67.09698638709065]
We propose a novel sEntiment-enhanceD Graph-based multimodal sarcasm Explanation framework, named EDGE.
In particular, we first propose a lexicon-guided utterance sentiment inference module, where a utterance sentiment refinement strategy is devised.
We then develop a module named Joint Cross Attention-based Sentiment Inference (JCA-SI) by extending the multimodal sentiment analysis model JCA to derive the joint sentiment label for each video-audio clip.
arXiv Detail & Related papers (2024-02-06T03:14:46Z) - Sarcasm Detection in a Disaster Context [103.93691731605163]
We introduce HurricaneSARC, a dataset of 15,000 tweets annotated for intended sarcasm.
Our best model is able to obtain as much as 0.70 F1 on our dataset.
arXiv Detail & Related papers (2023-08-16T05:58:12Z) - MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System [57.650338588086186]
We introduce MMSD2.0, a correction dataset that fixes the shortcomings of MMSD.
We present a novel framework called multi-view CLIP that is capable of leveraging multi-grained cues from multiple perspectives.
arXiv Detail & Related papers (2023-07-14T03:22:51Z) - Researchers eye-view of sarcasm detection in social media textual
content [0.0]
Enormous use of sarcastic text in all forms of communication in social media will have a physiological effect on target users.
This paper discusses various sarcasm detection techniques and concludes with some approaches, related datasets with optimal features.
arXiv Detail & Related papers (2023-04-17T19:45:10Z) - Sarcasm Detection Framework Using Emotion and Sentiment Features [62.997667081978825]
We propose a model which incorporates emotion and sentiment features to capture the incongruity intrinsic to sarcasm.
Our approach achieved state-of-the-art results on four datasets from social networking platforms and online media.
arXiv Detail & Related papers (2022-11-23T15:14:44Z) - How to Describe Images in a More Funny Way? Towards a Modular Approach
to Cross-Modal Sarcasm Generation [62.89586083449108]
We study a new problem of cross-modal sarcasm generation (CMSG), i.e., generating a sarcastic description for a given image.
CMSG is challenging as models need to satisfy the characteristics of sarcasm, as well as the correlation between different modalities.
We propose an Extraction-Generation-Ranking based Modular method (EGRM) for cross-model sarcasm generation.
arXiv Detail & Related papers (2022-11-20T14:38:24Z) - sarcasm detection and quantification in arabic tweets [7.173484352846755]
This paper intends to create a new humanly annotated Arabic corpus for sarcasm detection collected from tweets.
The proposed approach tackles the problem as a regression problem instead of classification.
arXiv Detail & Related papers (2021-08-03T11:48:27Z) - Parallel Deep Learning-Driven Sarcasm Detection from Pop Culture Text
and English Humor Literature [0.76146285961466]
We manually extract the sarcastic word distribution features of a benchmark pop culture sarcasm corpus.
We generate input sequences formed of the weighted vectors from such words.
Our proposed model for detecting sarcasm peaks a training accuracy of 98.95% when trained with the discussed dataset.
arXiv Detail & Related papers (2021-06-10T14:01:07Z) - A Report on the 2020 Sarcasm Detection Shared Task [30.430371267812554]
Sarcasm analysis is a popular research problem in natural language processing.
As the community working on computational approaches for sarcasm detection is growing, it is imperative to analyze the current state-of-the-art.
We report on the shared task on sarcasm detection we conducted as a part of the 2nd Workshop on Figurative Language Processing (Fig 2020) at ACL 2020.
arXiv Detail & Related papers (2020-05-12T14:27:19Z) - $R^3$: Reverse, Retrieve, and Rank for Sarcasm Generation with
Commonsense Knowledge [51.70688120849654]
We propose an unsupervised approach for sarcasm generation based on a non-sarcastic input sentence.
Our method employs a retrieve-and-edit framework to instantiate two major characteristics of sarcasm.
arXiv Detail & Related papers (2020-04-28T02:30:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.