論文の概要: A Combined Approach To Detect Key Variables In Thick Data Analytics
- arxiv url: http://arxiv.org/abs/2006.00864v1
- Date: Mon, 1 Jun 2020 11:53:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 06:14:17.234047
- Title: A Combined Approach To Detect Key Variables In Thick Data Analytics
- Title(参考訳): 太いデータ分析におけるキー変数検出のための組み合わせ手法
- Authors: Giovanni Antonelli, Rosa Arboretti Giancristofaro, Riccardo Ceccato,
Paolo Centomo, Luca Pegoraro, Luigi Salmaso and Marco Zecca
- Abstract要約: 機械学習において、戦略的なタスクの1つは、応答の予測子として重要な変数のみを選択することである。
本稿では,候補予測変数に対する置換テストの適用を前提としたアプローチを提案する。
いくつかの工業的問題はそのようなアプローチの恩恵を受ける可能性があり、化学分析の分野での応用が提示される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In machine learning one of the strategic tasks is the selection of only
significant variables as predictors for the response(s). In this paper an
approach is proposed which consists in the application of permutation tests on
the candidate predictor variables in the aim of identifying only the most
informative ones. Several industrial problems may benefit from such an
approach, and an application in the field of chemical analysis is presented. A
comparison is carried out between the approach proposed and Lasso, that is one
of the most common alternatives for feature selection available in the
literature.
- Abstract(参考訳): 機械学習における戦略課題の1つは、応答の予測因子として重要な変数のみを選択することである。
本稿では,最も情報に富む変数のみを特定することを目的として,候補予測変数に対する置換テストの適用を前提とした手法を提案する。
いくつかの工業的問題はそのようなアプローチの恩恵を受ける可能性があり、化学分析の分野への応用を示す。
提案されたアプローチとlassoの比較が行われ、これは文献で利用可能な機能選択の最も一般的な選択肢の1つである。
関連論文リスト
- Model-independent variable selection via the rule-based variable priority [1.2771542695459488]
モデルに依存しない新しいアプローチである可変優先度(VarPro)を導入する。
VarProは、人工データを生成したり、予測エラーを評価することなく、ルールを活用する。
VarProはノイズ変数に対して一貫したフィルタリング特性を持つことを示す。
論文 参考訳(メタデータ) (2024-09-13T17:32:05Z) - A multi-criteria approach for selecting an explanation from the set of counterfactuals produced by an ensemble of explainers [4.239829789304117]
そこで本研究では,マルチ基準解析に基づいて単一対実数を選択するマルチステージアンサンブル手法を提案する。
提案手法は、検討された品質指標の魅力的な妥協値を持つ、完全に実行可能な対策を生成できる。
論文 参考訳(メタデータ) (2024-03-20T19:25:11Z) - Large Language Models Are Not Robust Multiple Choice Selectors [117.72712117510953]
複数選択質問(MCQ)は、大規模言語モデル(LLM)の評価において、一般的なが重要なタスク形式として機能する。
この研究は、現代のLLMが、その固有の「選択バイアス」によるオプション位置変化に対して脆弱であることを示している。
そこで本研究では,オプションIDに対する事前バイアスを全体予測分布から分離するPriDeという,ラベルのない推論時間脱バイアス手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T17:44:56Z) - Best-Effort Adaptation [62.00856290846247]
本稿では, 試料再重み付け法に関する新しい理論的解析を行い, 試料再重み付け法を一様に保持する境界について述べる。
これらの境界が、我々が詳細に議論する学習アルゴリズムの設計を導く方法を示す。
本稿では,本アルゴリズムの有効性を実証する一連の実験結果について報告する。
論文 参考訳(メタデータ) (2023-05-10T00:09:07Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - Regularized Multivariate Analysis Framework for Interpretable
High-Dimensional Variable Selection [0.0]
本稿では,l-21ノルムを利用して特徴抽出プロセス中に変数選択を行う新しい手法を提案する。
異なる問題に対する実験結果は、提案した定式化の利点を裏付けるものである。
論文 参考訳(メタデータ) (2021-12-22T22:37:05Z) - Optimal transport framework for efficient prototype selection [21.620708125860066]
最適なトランスポート(ot)ベースのフレームワークを開発し、与えられたターゲットデータセットを最もよく表現する有益な例を選定する。
目的関数は部分モジュラリティの重要な特性を享受し、計算速度と決定論的近似保証を持つ並列化可能なグリーディ法を提案する。
論文 参考訳(メタデータ) (2021-03-18T10:50:14Z) - Greedy Search Algorithms for Unsupervised Variable Selection: A
Comparative Study [3.4888132404740797]
本稿では,非監視変数選択に基づく次元還元について述べる。
本稿では,7つの非監視勾配変数選択アルゴリズムの臨界評価について述べる。
本稿では,FSCA(Forward selection component analysis)アルゴリズムで説明された分散の遅延実装を初めて導入し,評価する。
論文 参考訳(メタデータ) (2021-03-03T21:10:26Z) - Reducing Confusion in Active Learning for Part-Of-Speech Tagging [100.08742107682264]
アクティブラーニング(AL)は、データ選択アルゴリズムを使用して、アノテーションコストを最小限に抑えるために有用なトレーニングサンプルを選択する。
本研究では、特定の出力タグのペア間の混乱を最大に低減するインスタンスの選択問題について検討する。
提案するAL戦略は,他のAL戦略よりも有意差で優れている。
論文 参考訳(メタデータ) (2020-11-02T06:24:58Z) - Online Active Model Selection for Pre-trained Classifiers [72.84853880948894]
我々は,任意のラウンドにおいて高い確率で最良のモデルをラベル付けし,出力する情報的サンプルを積極的に選択するオンライン選択的サンプリング手法を設計する。
我々のアルゴリズムは、敵とストリームの両方のオンライン予測タスクに利用できる。
論文 参考訳(メタデータ) (2020-10-19T19:53:15Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。