Hessian-based optimization of constrained quantum control
- URL: http://arxiv.org/abs/2006.00935v2
- Date: Wed, 16 Sep 2020 07:32:32 GMT
- Title: Hessian-based optimization of constrained quantum control
- Authors: Mogens Dalgaard and Felix Motzoi and Jesper Hasseriis Mohr Jensen and
Jacob Sherson
- Abstract summary: gradient-based textscgrape algorithm is successfully applied in a wide range of different branches of quantum physics.
We derive and implement exact $2mathrmnd$ order analytical derivatives of the coherent dynamics.
We demonstrate performance improvements for both the best and average errors of constrained unitary gate synthesis on a circuit-textscqed system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient optimization of quantum systems is a necessity for reaching fault
tolerant thresholds. A standard tool for optimizing simulated quantum dynamics
is the gradient-based \textsc{grape} algorithm, which has been successfully
applied in a wide range of different branches of quantum physics. In this work,
we derive and implement exact $2^{\mathrm{nd}}$ order analytical derivatives of
the coherent dynamics and find improvements compared to the standard of
optimizing with the approximate $2^{\mathrm{nd}}$ order \textsc{bfgs}. We
demonstrate performance improvements for both the best and average errors of
constrained unitary gate synthesis on a circuit-\textsc{qed} system over a
broad range of different gate durations.
Related papers
- A General Framework for Gradient-Based Optimization of Superconducting Quantum Circuits using Qubit Discovery as a Case Study [0.19528996680336308]
We present a comprehensive framework for the gradient-based optimization of superconducting quantum circuits.
We apply this framework to the qubit discovery problem, demonstrating its effectiveness in identifying qubit designs with superior performance metrics.
arXiv Detail & Related papers (2024-08-22T19:46:50Z) - Quantum Circuit Optimization using Differentiable Programming of Tensor Network States [0.0]
The said algorithm runs on classical hardware and finds shallow, accurate quantum circuits.
All circuits achieve high state fidelities within reasonable CPU time and modest memory requirements.
arXiv Detail & Related papers (2024-08-22T17:48:53Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
The GRadient Ascent Pulse Engineering (GRAPE) method is widely used for optimization in quantum control.
We adopt GRAPE method for optimizing objective functionals for open quantum systems driven by both coherent and incoherent controls.
The efficiency of the algorithm is demonstrated through numerical simulations for the state-to-state transition problem.
arXiv Detail & Related papers (2023-07-17T13:37:18Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Progress towards analytically optimal angles in quantum approximate
optimisation [0.0]
The Quantum Approximate optimisation algorithm is a $p$ layer, time-variable split operator method executed on a quantum processor.
We prove that optimal parameters for $p=1$ layer reduce to one free variable and in the thermodynamic limit, we recover optimal angles.
We moreover demonstrate that conditions for vanishing gradients of the overlap function share a similar form which leads to a linear relation between circuit parameters, independent on the number of qubits.
arXiv Detail & Related papers (2021-09-23T18:00:13Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - MoG-VQE: Multiobjective genetic variational quantum eigensolver [0.0]
Variational quantum eigensolver (VQE) emerged as a first practical algorithm for near-term quantum computers.
Here, we propose the approach which can combine both low depth and improved precision.
We observe nearly ten-fold reduction in the two-qubit gate counts as compared to the standard hardware-efficient ansatz.
arXiv Detail & Related papers (2020-07-08T20:44:50Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.