Artificial neural networks for neuroscientists: A primer
- URL: http://arxiv.org/abs/2006.01001v2
- Date: Thu, 24 Sep 2020 16:15:27 GMT
- Title: Artificial neural networks for neuroscientists: A primer
- Authors: Guangyu Robert Yang, Xiao-Jing Wang
- Abstract summary: Artificial neural networks (ANNs) are essential tools in machine learning that have drawn increasing attention in neuroscience.
In this pedagogical Primer, we introduce ANNs and demonstrate how they have been fruitfully deployed to study neuroscientific questions.
With a focus on bringing this mathematical framework closer to neurobiology, we detail how to customize the analysis, structure, and learning of ANNs.
- Score: 4.771833920251869
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial neural networks (ANNs) are essential tools in machine learning
that have drawn increasing attention in neuroscience. Besides offering powerful
techniques for data analysis, ANNs provide a new approach for neuroscientists
to build models for complex behaviors, heterogeneous neural activity and
circuit connectivity, as well as to explore optimization in neural systems, in
ways that traditional models are not designed for. In this pedagogical Primer,
we introduce ANNs and demonstrate how they have been fruitfully deployed to
study neuroscientific questions. We first discuss basic concepts and methods of
ANNs. Then, with a focus on bringing this mathematical framework closer to
neurobiology, we detail how to customize the analysis, structure, and learning
of ANNs to better address a wide range of challenges in brain research. To help
the readers garner hands-on experience, this Primer is accompanied with
tutorial-style code in PyTorch and Jupyter Notebook, covering major topics.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Learning to Act through Evolution of Neural Diversity in Random Neural
Networks [9.387749254963595]
In most artificial neural networks (ANNs), neural computation is abstracted to an activation function that is usually shared between all neurons.
We propose the optimization of neuro-centric parameters to attain a set of diverse neurons that can perform complex computations.
arXiv Detail & Related papers (2023-05-25T11:33:04Z) - Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural
Networks [20.99799416963467]
In the human brain, neuronal diversity is an enabling factor for all kinds of biological intelligent behaviors.
In this Primer, we first discuss the preliminaries of biological neuronal diversity and the characteristics of information transmission and processing in a biological neuron.
arXiv Detail & Related papers (2023-01-23T02:23:45Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Learning to learn online with neuromodulated synaptic plasticity in
spiking neural networks [0.0]
We show that models of neuromodulated synaptic plasticity from neuroscience can be trained to learn through gradient descent.
This framework opens a new path toward developing neuroscience inspired online learning algorithms.
arXiv Detail & Related papers (2022-06-25T00:28:40Z) - Neuromorphic Artificial Intelligence Systems [58.1806704582023]
Modern AI systems, based on von Neumann architecture and classical neural networks, have a number of fundamental limitations in comparison with the brain.
This article discusses such limitations and the ways they can be mitigated.
It presents an overview of currently available neuromorphic AI projects in which these limitations are overcome.
arXiv Detail & Related papers (2022-05-25T20:16:05Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Neural Networks, Artificial Intelligence and the Computational Brain [0.0]
This study explores the concept of ANNs as a simulator of the biological neuron.
It also explores why brain-like intelligence is needed and how it differs from computational framework.
arXiv Detail & Related papers (2020-12-25T05:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.