論文の概要: Good pivots for small sparse matrices
- arxiv url: http://arxiv.org/abs/2006.01623v2
- Date: Wed, 29 Jul 2020 11:23:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 01:14:01.339183
- Title: Good pivots for small sparse matrices
- Title(参考訳): 小さなスパース行列に対する良いピボット
- Authors: Manuel Kauers, Jakob Moosbauer
- Abstract要約: スパース行列が最大8×8$の場合、ガウス除去におけるピボット選択の最適選択を決定する。
人気の高いピボット選択戦略によって選択されたピボットよりもわずかに優れていることが判明したので、改善の余地はいくつかある。
次に、機械学習を用いてピボット選択戦略を作成し、古典的な戦略と比較して、それが実際に小さな改善につながることを見つけます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For sparse matrices up to size $8 \times 8$, we determine optimal choices for
pivot selection in Gaussian elimination. It turns out that they are slightly
better than the pivots chosen by a popular pivot selection strategy, so there
is some room for improvement. We then create a pivot selection strategy using
machine learning and find that it indeed leads to a small improvement compared
to the classical strategy.
- Abstract(参考訳): 8 \times 8$までのスパース行列に対しては、ガウス除去におけるピボット選択の最適選択を決定する。
人気のピボット選択戦略によって選択されたピボットよりもわずかに優れていることが分かり、改善の余地がある。
次に、機械学習を使ってピボット選択戦略を作成し、それが古典的な戦略よりも小さな改善につながることを見出します。
関連論文リスト
- A Reinforcement-Learning-Based Multiple-Column Selection Strategy for
Column Generation [33.03891490706789]
列生成は大規模線形プログラミング問題の解決において最も成功した手法の1つである。
本稿では, 強化学習に基づく複数カラム選択戦略を提案する。
本手法は,カットストック問題とグラフカラー化問題という2つの問題に対して評価する。
論文 参考訳(メタデータ) (2023-12-21T11:35:10Z) - A Consistent and Scalable Algorithm for Best Subset Selection in Single
Index Models [1.3236116985407258]
高次元モデルにおける最良の部分集合選択は、計算的に難解であることが知られている。
我々は,高次元SIMにおける最良部分選択のための,証明可能な最初の拡張性アルゴリズムを提案する。
アルゴリズムは部分集合選択の一貫性を保ち、高い確率でオラクル特性を持つ。
論文 参考訳(メタデータ) (2023-09-12T13:48:06Z) - Fair Column Subset Selection [6.004035936737586]
行列列を2つの群に分割した設定を考え,その目的は2つの群の最大誤差再構成を最小限に抑える列の部分集合を選択することである。
特定のシナリオでは、各グループごとに列を別々に選ぶことは避けられないため、期待される列数を2倍にする。
フェアセッティングのための決定論的レバレッジスコアサンプリング戦略を提案し、2つのグループが存在する場合、最小サイズのカラムサブセットのサンプリングがNPハードとなることを示す。
論文 参考訳(メタデータ) (2023-06-07T15:00:38Z) - Optimally Weighted Ensembles of Regression Models: Exact Weight
Optimization and Applications [0.0]
異なる回帰モデルを組み合わせることで、単一の(ベストな)回帰モデルを選択するよりも良い結果が得られることを示す。
不均一回帰モデルから最適重み付き線形結合を求める効率的な手法を概説する。
論文 参考訳(メタデータ) (2022-06-22T09:11:14Z) - (Machine) Learning to Improve the Empirical Performance of Discrete
Algorithms [0.0]
我々は、人間の専門家の意見なしに、与えられたデータに対して最適なアルゴリズムを選択するために機械学習手法を訓練する。
我々のフレームワークは、固定されたデフォルトのピボットルールを使用するだけで全体のパフォーマンスを改善する様々なピボットルールを推奨しています。
最短経路問題に対して、訓練されたモデルは大幅に改善され、我々の選択は最適な選択から平均.7パーセント離れている。
論文 参考訳(メタデータ) (2021-09-29T08:33:09Z) - On the Adversarial Robustness of LASSO Based Feature Selection [72.54211869067979]
検討されたモデルでは、悪意のある敵がデータセット全体を観察し、レスポンス値やフィーチャーマトリックスを慎重に修正する。
両レベルの最適化問題として、敵の修正戦略を定式化する。
合成および実データを用いた数値的な例は,本手法が効率的かつ効果的であることを示している。
論文 参考訳(メタデータ) (2020-10-20T05:51:26Z) - Conditional Uncorrelation and Efficient Non-approximate Subset Selection
in Sparse Regression [72.84177488527398]
相関性の観点からスパース回帰を考察し,条件付き非相関式を提案する。
提案手法により、計算複雑性は、スパース回帰における各候補部分集合に対して$O(frac16k3+mk2+mkd)$から$O(frac16k3+frac12mk2)$に削減される。
論文 参考訳(メタデータ) (2020-09-08T20:32:26Z) - Learning the Positions in CountSketch [51.15935547615698]
本稿では,まずランダムなスケッチ行列に乗じてデータを圧縮し,最適化問題を高速に解くスケッチアルゴリズムについて検討する。
本研究では,ゼロでないエントリの位置を最適化する学習アルゴリズムを提案する。
このアルゴリズムは, 従来よりも低階近似の精度を向上し, 初めて$k$-meansクラスタリングのような他の問題に適用できることを示す。
論文 参考訳(メタデータ) (2020-07-20T05:06:29Z) - Model Selection in Contextual Stochastic Bandit Problems [51.94632035240787]
基本アルゴリズムを選択できるメタアルゴリズムを開発した。
基本アルゴリズムの1つが$O(sqrtT)$後悔している場合でも、一般的には$Omega(sqrtT)$後悔よりも良いものを得ることはできません。
論文 参考訳(メタデータ) (2020-03-03T18:46:34Z) - Optimal Feature Manipulation Attacks Against Linear Regression [64.54500628124511]
本稿では,データセットに慎重に設計した有害なデータポイントを付加したり,元のデータポイントを修正したりすることで,線形回帰による係数の操作方法について検討する。
エネルギー予算を考慮し, 目標が指定された回帰係数を1つ変更する場合に, 最適毒素データ点の閉形式解をまず提示する。
次に、攻撃者が1つの特定の回帰係数を変更しつつ、他をできるだけ小さく変更することを目的とした、より困難なシナリオに分析を拡張します。
論文 参考訳(メタデータ) (2020-02-29T04:26:59Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
最小二乗問題に対する反復スケッチの性能について検討する。
本研究では、Haar行列とランダム化されたHadamard行列の収束速度が同一であることを示し、ランダムなプロジェクションを経時的に改善することを示した。
これらの手法は、ランダム化次元還元を用いた他のアルゴリズムにも適用することができる。
論文 参考訳(メタデータ) (2020-02-03T16:17:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。