Learning Opinion Dynamics From Social Traces
- URL: http://arxiv.org/abs/2006.01673v1
- Date: Tue, 2 Jun 2020 14:48:17 GMT
- Title: Learning Opinion Dynamics From Social Traces
- Authors: Corrado Monti, Gianmarco De Francisci Morales, Francesco Bonchi
- Abstract summary: We propose an inference mechanism for fitting a generative, agent-like model of opinion dynamics to real-world social traces.
We showcase our proposal by translating a classical agent-based model of opinion dynamics into its generative counterpart.
We apply our model to real-world data from Reddit to explore the long-standing question about the impact of backfire effect.
- Score: 25.161493874783584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Opinion dynamics - the research field dealing with how people's opinions form
and evolve in a social context - traditionally uses agent-based models to
validate the implications of sociological theories. These models encode the
causal mechanism that drives the opinion formation process, and have the
advantage of being easy to interpret. However, as they do not exploit the
availability of data, their predictive power is limited. Moreover, parameter
calibration and model selection are manual and difficult tasks.
In this work we propose an inference mechanism for fitting a generative,
agent-like model of opinion dynamics to real-world social traces. Given a set
of observables (e.g., actions and interactions between agents), our model can
recover the most-likely latent opinion trajectories that are compatible with
the assumptions about the process dynamics. This type of model retains the
benefits of agent-based ones (i.e., causal interpretation), while adding the
ability to perform model selection and hypothesis testing on real data.
We showcase our proposal by translating a classical agent-based model of
opinion dynamics into its generative counterpart. We then design an inference
algorithm based on online expectation maximization to learn the latent
parameters of the model. Such algorithm can recover the latent opinion
trajectories from traces generated by the classical agent-based model. In
addition, it can identify the most likely set of macro parameters used to
generate a data trace, thus allowing testing of sociological hypotheses.
Finally, we apply our model to real-world data from Reddit to explore the
long-standing question about the impact of backfire effect. Our results suggest
a low prominence of the effect in Reddit's political conversation.
Related papers
- Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
This work uses variational inference to estimate the parameters of an opinion dynamics ABM.
We transform the inference process into an optimization problem suitable for automatic differentiation.
Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods.
arXiv Detail & Related papers (2024-03-08T14:45:18Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
Susceptibility to misinformation describes the degree of belief in unverifiable claims that is not observable.
Existing susceptibility studies heavily rely on self-reported beliefs.
We propose a computational approach to model users' latent susceptibility levels.
arXiv Detail & Related papers (2023-11-16T07:22:56Z) - From Identifiable Causal Representations to Controllable Counterfactual Generation: A Survey on Causal Generative Modeling [17.074858228123706]
We focus on fundamental theory, methodology, drawbacks, datasets, and metrics.
We cover applications of causal generative models in fairness, privacy, out-of-distribution generalization, precision medicine, and biological sciences.
arXiv Detail & Related papers (2023-10-17T05:45:32Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Are Neural Topic Models Broken? [81.15470302729638]
We study the relationship between automated and human evaluation of topic models.
We find that neural topic models fare worse in both respects compared to an established classical method.
arXiv Detail & Related papers (2022-10-28T14:38:50Z) - The drivers of online polarization: fitting models to data [0.0]
echo chamber effect and opinion polarization may be driven by several factors including human biases in information consumption and personalized recommendations produced by feed algorithms.
Until now, studies have mainly used opinion dynamic models to explore the mechanisms behind the emergence of polarization and echo chambers.
We provide a method to numerically compare the opinion distributions obtained from simulations with those measured on social media.
arXiv Detail & Related papers (2022-05-31T17:00:41Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Exploring Social Posterior Collapse in Variational Autoencoder for
Interaction Modeling [26.01824780050843]
Variational Autoencoder (VAE) has been widely applied in multi-agent interaction modeling.
VAE is prone to ignoring historical social context when predicting the future trajectory of an agent.
We propose a novel sparse graph attention message-passing layer, which helps us detect social posterior collapse.
arXiv Detail & Related papers (2021-12-01T06:20:58Z) - Predicting Census Survey Response Rates With Parsimonious Additive
Models and Structured Interactions [14.003044924094597]
We consider the problem of predicting survey response rates using a family of flexible and interpretable nonparametric models.
The study is motivated by the US Census Bureau's well-known ROAM application.
arXiv Detail & Related papers (2021-08-24T17:49:55Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.