Variational Inference of Parameters in Opinion Dynamics Models
- URL: http://arxiv.org/abs/2403.05358v1
- Date: Fri, 8 Mar 2024 14:45:18 GMT
- Title: Variational Inference of Parameters in Opinion Dynamics Models
- Authors: Jacopo Lenti, Fabrizio Silvestri, Gianmarco De Francisci Morales
- Abstract summary: This work uses variational inference to estimate the parameters of an opinion dynamics ABM.
We transform the inference process into an optimization problem suitable for automatic differentiation.
Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods.
- Score: 9.51311391391997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the frequent use of agent-based models (ABMs) for studying social
phenomena, parameter estimation remains a challenge, often relying on costly
simulation-based heuristics. This work uses variational inference to estimate
the parameters of an opinion dynamics ABM, by transforming the estimation
problem into an optimization task that can be solved directly.
Our proposal relies on probabilistic generative ABMs (PGABMs): we start by
synthesizing a probabilistic generative model from the ABM rules. Then, we
transform the inference process into an optimization problem suitable for
automatic differentiation. In particular, we use the Gumbel-Softmax
reparameterization for categorical agent attributes and stochastic variational
inference for parameter estimation. Furthermore, we explore the trade-offs of
using variational distributions with different complexity: normal distributions
and normalizing flows.
We validate our method on a bounded confidence model with agent roles
(leaders and followers). Our approach estimates both macroscopic (bounded
confidence intervals and backfire thresholds) and microscopic ($200$
categorical, agent-level roles) more accurately than simulation-based and MCMC
methods. Consequently, our technique enables experts to tune and validate their
ABMs against real-world observations, thus providing insights into human
behavior in social systems via data-driven analysis.
Related papers
- Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - FUSE: Fast Unified Simulation and Estimation for PDEs [11.991297011923004]
We argue that solving both problems within the same framework can lead to consistent gains in accuracy and robustness.
We present the capabilities of the proposed methodology for predicting continuous and discrete biomarkers in full-body haemodynamics simulations.
arXiv Detail & Related papers (2024-05-23T13:37:26Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Choice Models and Permutation Invariance: Demand Estimation in
Differentiated Products Markets [5.8429701619765755]
We demonstrate how non-parametric estimators like neural nets can easily approximate choice functions.
Our proposed functionals can flexibly capture underlying consumer behavior in a completely data-driven fashion.
Our empirical analysis confirms that the estimator generates realistic and comparable own- and cross-price elasticities.
arXiv Detail & Related papers (2023-07-13T23:24:05Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Model-Based Counterfactual Synthesizer for Interpretation [40.01787107375103]
We propose a Model-based Counterfactual Synthesizer (MCS) framework for interpreting machine learning models.
We first analyze the model-based counterfactual process and construct a base synthesizer using a conditional generative adversarial net (CGAN)
To better approximate the counterfactual universe for those rare queries, we novelly employ the umbrella sampling technique to conduct the MCS framework training.
arXiv Detail & Related papers (2021-06-16T17:09:57Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.