On the Reasoning Capacity of AI Models and How to Quantify It
- URL: http://arxiv.org/abs/2501.13833v1
- Date: Thu, 23 Jan 2025 16:58:18 GMT
- Title: On the Reasoning Capacity of AI Models and How to Quantify It
- Authors: Santosh Kumar Radha, Oktay Goktas,
- Abstract summary: Large Language Models (LLMs) have intensified the debate surrounding the fundamental nature of their reasoning capabilities.
While achieving high performance on benchmarks such as GPQA and MMLU, these models exhibit limitations in more complex reasoning tasks.
We propose a novel phenomenological approach that goes beyond traditional accuracy metrics to probe the underlying mechanisms of model behavior.
- Score: 0.0
- License:
- Abstract: Recent advances in Large Language Models (LLMs) have intensified the debate surrounding the fundamental nature of their reasoning capabilities. While achieving high performance on benchmarks such as GPQA and MMLU, these models exhibit limitations in more complex reasoning tasks, highlighting the need for more rigorous evaluation methodologies. We propose a novel phenomenological approach that goes beyond traditional accuracy metrics to probe the underlying mechanisms of model behavior, establishing a framework that could broadly impact how we analyze and understand AI systems. Using positional bias in multiple-choice reasoning tasks as a case study, we demonstrate how systematic perturbations can reveal fundamental aspects of model decision-making. To analyze these behaviors, we develop two complementary phenomenological models: a Probabilistic Mixture Model (PMM) that decomposes model responses into reasoning, memorization, and guessing components and an Information-Theoretic Consistency (ITC) analysis that quantifies the relationship between model confidence and strategy selection. Through controlled experiments on reasoning benchmarks, we show that true reasoning remains challenging for current models, with apparent success often relying on sophisticated combinations of memorization and pattern matching rather than genuine logical deduction. More fundamentally, we demonstrate that accuracy alone often overstates a model's reasoning abilities, as model behavior can be characterized through underlying mechanisms in the phase space of cognitive strategies, revealing how models dynamically balance different approaches when responding to queries. This framework enables quantitative criteria for real-world deployments, allowing applications to specify reliability thresholds based on strategy distributions rather than aggregate performance metrics.
Related papers
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.
Models may behave unreliably due to poorly explored failure modes.
causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - A NotSo Simple Way to Beat Simple Bench [0.0]
This paper presents a novel framework for enhancing reasoning capabilities in large language models (LLMs)
We propose a multi-step prompting strategy coupled with global consistency checks to improve model accuracy and robustness.
Our results reveal model-specific strengths: Claude excels in maintaining logical consistency, while GPT-4o exhibits exploratory creativity but struggles with ambiguous prompts.
arXiv Detail & Related papers (2024-12-12T16:04:31Z) - SynthTree: Co-supervised Local Model Synthesis for Explainable Prediction [15.832975722301011]
We propose a novel method to enhance explainability with minimal accuracy loss.
We have developed novel methods for estimating nodes by leveraging AI techniques.
Our findings highlight the critical role that statistical methodologies can play in advancing explainable AI.
arXiv Detail & Related papers (2024-06-16T14:43:01Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
Investigating internal reasoning mechanisms of large language models can help us design better model architectures and training strategies.
In this study, we constructed a symbolic dataset to investigate the mechanisms by which Transformer models employ vertical thinking strategy.
We proposed a random matrix-based algorithm to enhance the model's reasoning ability, resulting in a 75% reduction in the training time required for the GPT-2 model.
arXiv Detail & Related papers (2024-05-24T07:41:26Z) - Distribution-consistency Structural Causal Models [6.276417011421679]
We introduce a novel textitdistribution-consistency assumption, and in alignment with it, we propose the Distribution-consistency Structural Causal Models (DiscoSCMs)
To concretely reveal the enhanced model capacity, we introduce a new identifiable causal parameter, textitthe probability of consistency, which holds practical significance within DiscoSCM alone.
arXiv Detail & Related papers (2024-01-29T06:46:15Z) - Incorporating Domain Knowledge in Deep Neural Networks for Discrete
Choice Models [0.5801044612920815]
This paper proposes a framework that expands the potential of data-driven approaches for DCM.
It includes pseudo data samples that represent required relationships and a loss function that measures their fulfillment.
A case study demonstrates the potential of this framework for discrete choice analysis.
arXiv Detail & Related papers (2023-05-30T12:53:55Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
Common practice in model-based reinforcement learning is to learn models that model every aspect of the agent's environment.
We argue that such models are not particularly well-suited for performing scalable and robust planning in lifelong reinforcement learning scenarios.
We propose new kinds of models that only model the relevant aspects of the environment, which we call "minimal value-minimal partial models"
arXiv Detail & Related papers (2023-01-24T16:40:01Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.