Efficient choice of coloured noises in stochastic dynamics of open
quantum systems
- URL: http://arxiv.org/abs/2006.01863v2
- Date: Thu, 18 Feb 2021 12:59:34 GMT
- Title: Efficient choice of coloured noises in stochastic dynamics of open
quantum systems
- Authors: Daniel Matos, Matthew A Lane, Ian J Ford and Lev Kantorovich
- Abstract summary: Liouville-von Neumann equation describes dynamics of reduced density matrix coupled to non-Markovian harmonic environment.
We present a number of schemes capable of generating coloured noises of this kind built on a noise amplitude reduction procedure.
We identify the scheme which performs best for the parameters used, improving convergence by orders of magnitude and increasing the time accessible by simulation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Stochastic Liouville-von Neumann (SLN) equation describes the dynamics of
an open quantum system reduced density matrix coupled to a non-Markovian
harmonic environment. The interaction with the environment is represented by
complex coloured noises which drive the system, and whose correlation functions
are set by the properties of the environment. We present a number of schemes
capable of generating coloured noises of this kind that are built on a noise
amplitude reduction procedure [Imai et al, Chem. Phys. 446, 134 (2015)],
including two analytically optimised schemes. In doing so, we pay close
attention to the properties of the correlation functions in Fourier space,
which we derive in full. For some schemes the method of Wiener filtering for
deconvolutions leads to the realisation that weakening causality in one of the
noise correlation functions improves numerical convergence considerably,
allowing us to introduce a well controlled method for doing so. We compare the
ability of these schemes, along with an alternative optimised scheme [Schmitz
and Stockburger, Eur. Phys. J.: Spec. Top. 227, 1929 (2019)], to reduce the
growth in the mean and variance of the trace of the reduced density matrix, and
their ability to extend the region in which the dynamics is stable and well
converged for a range of temperatures. By numerically optimising an additional
noise scaling freedom, we identify the scheme which performs best for the
parameters used, improving convergence by orders of magnitude and increasing
the time accessible by simulation.
Related papers
- Gauge-Fixing Quantum Density Operators At Scale [0.0]
We provide theory, algorithms, and simulations of non-equilibrium quantum systems.
We analytically and numerically examine the virtual freedoms associated with the representation of quantum density operators.
arXiv Detail & Related papers (2024-11-05T22:56:13Z) - Stochastic action for the entanglement of a noisy monitored two-qubit
system [55.2480439325792]
We study the effect of local unitary noise on the entanglement evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.
We construct a Hamiltonian by incorporating the noise into the Chantasri-Dressel-Jordan path integral and use it to identify the optimal entanglement dynamics.
Numerical investigation of long-time steady-state entanglement reveals a non-monotonic relationship between concurrence and noise strength.
arXiv Detail & Related papers (2024-03-13T11:14:10Z) - Weak Collocation Regression for Inferring Stochastic Dynamics with
L\'{e}vy Noise [8.15076267771005]
We propose a weak form of the Fokker-Planck (FP) equation for extracting dynamics with L'evy noise.
Our approach can simultaneously distinguish mixed noise types, even in multi-dimensional problems.
arXiv Detail & Related papers (2024-03-13T06:54:38Z) - Correlated noise enhances coherence and fidelity in coupled qubits [5.787049285733455]
Noise correlation can enhance the fidelity and purity of a maximally entangled (Bell) state.
These observations may be useful in the design of high-fidelity quantum gates and communication protocols.
arXiv Detail & Related papers (2023-08-01T21:13:35Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Taming Quantum Noise for Efficient Low Temperature Simulations of Open
Quantum Systems [4.866728358750297]
We introduce an effective treatment of quantum noise in frequency space by systematically clustering higher order Matsubara poles equivalent to an optimized rational decomposition.
This leads to an elegant extension of the HEOM to arbitrary temperatures and very general reservoirs in combination with efficiency, high accuracy and long-time stability.
As one highly non-trivial application, for the sub-ohmic spin-boson model at vanishing temperature the Shiba relation is quantitatively verified which predicts the long-time decay of correlation functions.
arXiv Detail & Related papers (2022-02-08T18:46:11Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Evaluating the noise resilience of variational quantum algorithms [0.0]
We simulate the effects of different types of noise in state preparation circuits of variational quantum algorithms.
We find that the inclusion of redundant parameterised gates makes the quantum circuits more resilient to noise.
arXiv Detail & Related papers (2020-11-02T16:56:58Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.