Multi-level Graph Convolutional Networks for Cross-platform Anchor Link
Prediction
- URL: http://arxiv.org/abs/2006.01963v1
- Date: Tue, 2 Jun 2020 22:01:27 GMT
- Title: Multi-level Graph Convolutional Networks for Cross-platform Anchor Link
Prediction
- Authors: Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys and
Katarzyna Musial
- Abstract summary: Cross-platform account matching plays a significant role in social network analytics.
We propose a novel framework that considers multi-level graph convolutions on both local network structure and hypergraph structure.
The proposed method overcomes data insufficiency problem of existing work and does not necessarily rely on user demographic information.
- Score: 47.047999403900775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-platform account matching plays a significant role in social network
analytics, and is beneficial for a wide range of applications. However,
existing methods either heavily rely on high-quality user generated content
(including user profiles) or suffer from data insufficiency problem if only
focusing on network topology, which brings researchers into an insoluble
dilemma of model selection. In this paper, to address this problem, we propose
a novel framework that considers multi-level graph convolutions on both local
network structure and hypergraph structure in a unified manner. The proposed
method overcomes data insufficiency problem of existing work and does not
necessarily rely on user demographic information. Moreover, to adapt the
proposed method to be capable of handling large-scale social networks, we
propose a two-phase space reconciliation mechanism to align the embedding
spaces in both network partitioning based parallel training and account
matching across different social networks. Extensive experiments have been
conducted on two large-scale real-life social networks. The experimental
results demonstrate that the proposed method outperforms the state-of-the-art
models with a big margin.
Related papers
- GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications [0.0]
This work presents a novel resolution-invariant model order reduction strategy for multifidelity applications.
We base our architecture on a novel neural network layer developed in this work, the graph feedforward network.
We exploit the method's capability of training and testing on different mesh sizes in an autoencoder-based reduction strategy for parametrised partial differential equations.
arXiv Detail & Related papers (2024-06-05T18:31:37Z) - Sifting out communities in large sparse networks [2.666294200266662]
We introduce an intuitive objective function for quantifying the quality of clustering results in large sparse networks.
We utilize a two-step method for identifying communities which is especially well-suited for this domain.
We identify complex genetic interactions in large-scale networks comprised of tens of thousands of nodes.
arXiv Detail & Related papers (2024-05-01T18:57:41Z) - Revisiting Generative Adversarial Networks for Binary Semantic
Segmentation on Imbalanced Datasets [20.538287907723713]
Anomalous crack region detection is a typical binary semantic segmentation task, which aims to detect pixels representing cracks on pavement surface images automatically by algorithms.
Existing deep learning-based methods have achieved outcoming results on specific public pavement datasets, but the performance would deteriorate dramatically on imbalanced datasets.
We propose a deep learning framework based on conditional Generative Adversarial Networks (cGANs) for the anomalous crack region detection tasks at the pixel level.
arXiv Detail & Related papers (2024-02-03T19:24:40Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Joint Inference of Diffusion and Structure in Partially Observed Social
Networks Using Coupled Matrix Factorization [3.399624105745357]
In this paper, a model is learned from partially observed data to infer unobserved diffusion and structure networks.
The interrelations among links of nodes and cascade processes are utilized in the proposed method via learning and low-dimensional latent factors.
Experiments on these synthetic and real-world datasets show that the proposed method successfully detects invisible social behaviors, predicts links, and identifies latent features.
arXiv Detail & Related papers (2020-10-03T17:48:57Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
We introduce a novel neural network termed Relation-and-Margin learning Network (ReMarNet)
Our method assembles two networks of different backbones so as to learn the features that can perform excellently in both of the aforementioned two classification mechanisms.
Experiments on four image datasets demonstrate that our approach is effective in learning discriminative features from a small set of labeled samples.
arXiv Detail & Related papers (2020-06-27T13:50:20Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.