論文の概要: Proximity-based Networking: Small world overlays optimized with particle
swarm optimization
- arxiv url: http://arxiv.org/abs/2006.02006v2
- Date: Sun, 7 Jun 2020 00:07:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 18:02:54.279359
- Title: Proximity-based Networking: Small world overlays optimized with particle
swarm optimization
- Title(参考訳): 近接ベースのネットワーク: particle swarm optimization で最適化された small world overlays
- Authors: Chase Smith, Alex Rusnak
- Abstract要約: 小規模世界のネットワークは、インターネットネットワーク内の情報の拡散とルックアップにおいて、信じられないほど有用である。
本稿では,各ノードの分割鍵空間内のピアの配置に,コード内の地理的位置を組み込んだネットワーク方式を提案する。
提案手法の柔軟性により,様々なSwarmモデルとエージェントが利用可能となる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information dissemination is a fundamental and frequently occurring problem
in large, dynamic, distributed systems. In order to solve this, there has been
an increased interest in creating efficient overlay networks that can maintain
decentralized peer-to-peer networks. Within these overlay networks nodes take
the patterns of small world networks, whose connections are based on proximity.
These small-world systems can be incredibly useful in the dissemination and
lookup of information within an internet network. The data can be efficiently
transferred and routing with minimal information loss through forward error
correct (FEC) and the User Datagram Protocol (UDP). We propose a networking
scheme that incorporates geographic location in chord for the organization of
peers within each node's partitioned key space. When we combine this with a
proximity-based neighborhood set {based on the small world structure} we can
mimic the efficient of solutions designed to solve traditional small-world
problems, with the additional benefit of resilience and fault-tolerance.
Furthermore, the routing and address book can be updated based on the
neighborhood requirements. The flexibility of our proposed schemes enables a
variety of swarm models, and agents. This enables our network to as an
underlying networking model that can be applied to file-sharing, streaming, and
synchronization of networks.
- Abstract(参考訳): 情報伝達は、大規模でダイナミックな分散システムにおいて、基本かつ頻繁に発生する問題である。
これを解決するため、分散ピアツーピアネットワークを維持できる効率的なオーバーレイネットワーク構築への関心が高まっている。
これらのオーバーレイネットワーク内のノードは、近接性に基づいて接続される小さな世界ネットワークのパターンを取り込む。
これらの小世界のシステムは、インターネットネットワーク内の情報の拡散とルックアップに極めて有用である。
データは転送され、転送エラー訂正(FEC)とユーザデータグラムプロトコル(UDP)を通じて、最小限の情報損失でルーティングされる。
本稿では,各ノードの分割鍵空間内のピアの配置に,コード内の地理的位置を組み込んだネットワーク方式を提案する。
これを近接系近傍集合 { based on the small world structure} と組み合わせると、従来の小世界の問題を解決するために設計された解の効率を模倣し、レジリエンスとフォールトトレランスの利点を付加することができる。
さらに、近隣要求に基づいてルーティングとアドレス帳を更新することができる。
提案手法の柔軟性により,様々なSwarmモデルとエージェントが利用可能となる。
これにより、ネットワークのファイル共有、ストリーミング、同期に適用可能な基盤となるネットワークモデルとしてネットワークが実現されます。
関連論文リスト
- NetDiff: Deep Graph Denoising Diffusion for Ad Hoc Network Topology Generation [1.6768151308423371]
本稿では,無線アドホックネットワークリンクトポロジを生成する拡散確率的アーキテクチャを記述したグラフであるNetDiffを紹介する。
この結果から,生成したリンクは現実的であり,データセットグラフに類似した構造的特性を有しており,操作するには小さな修正と検証ステップのみが必要であることがわかった。
論文 参考訳(メタデータ) (2024-10-09T15:39:49Z) - Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
我々は、属性付きネットワークにおけるコミュニティ検出のための、教師なしのtextbfGraph Attention textbfAutotextbfEncoder に基づく、シンプルで効率的なクラスタリング指向モデルを提案する。
提案モデルは,ネットワークのトポロジと属性情報の両方から表現を十分に学習し,同時に2つの目的,すなわち再構築とコミュニティ発見に対処する。
論文 参考訳(メタデータ) (2023-11-21T20:45:55Z) - Hierarchical Multi-Marginal Optimal Transport for Network Alignment [52.206006379563306]
マルチネットワークアライメントは,複数ネットワーク上での協調学習に必須の要件である。
マルチネットワークアライメントのための階層型マルチマージ最適トランスポートフレームワークHOTを提案する。
提案するHOTは,有効性とスケーラビリティの両面で,最先端の大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-10-06T02:35:35Z) - DeHIN: A Decentralized Framework for Embedding Large-scale Heterogeneous
Information Networks [64.62314068155997]
本稿では,異種情報ネットワーク(DeHIN)のための分散埋め込みフレームワークについて述べる。
DeHINは、大きなHINをハイパーグラフとして革新的に定式化するコンテキスト保存分割機構を提供する。
当社のフレームワークでは,木のようなパイプラインを採用することで,効率よくHINを分割する分散戦略を採用しています。
論文 参考訳(メタデータ) (2022-01-08T04:08:36Z) - Optimized Quantum Networks [68.8204255655161]
量子ネットワークは、ネットワーク要求の前に様々な種類の絡み合いを生成することができる。
これを応用して、所望の機能に合わせた絡み合いベースの量子ネットワークを設計する。
論文 参考訳(メタデータ) (2021-07-21T18:00:07Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Planning Spatial Networks [4.499055111059408]
目標指向グラフ構築の問題に対処する。
開始グラフ、大域的目的関数、修正予算が与えられた場合、グラフに追加することで目的を最大に改善するエッジの集合を見つけることが目的である。
この問題は、交通や重要なインフラネットワークといった社会にとって非常に重要なネットワークに出現する。
論文 参考訳(メタデータ) (2021-06-12T13:01:11Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
本研究では,分散ネットワーク構造を持つローカルデータセットの局所的(あるいはパーソナライズされた)モデルを学習するための最適化手法について検討する。
我々の主要な概念的貢献は、総変動最小化(GTV)としてフェデレーション学習を定式化することである。
私たちのアルゴリズムの主な貢献は、完全に分散化されたフェデレーション学習アルゴリズムです。
論文 参考訳(メタデータ) (2021-05-26T18:07:19Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
firefly neural architecture descentは、ニューラルネットワークを漸進的かつ動的に成長させるための一般的なフレームワークである。
ホタルの降下は、より広く、より深くネットワークを柔軟に成長させ、正確だがリソース効率のよいニューラルアーキテクチャを学習するために応用できることを示す。
特に、サイズは小さいが、最先端の手法で学習したネットワークよりも平均精度が高いネットワークを学習する。
論文 参考訳(メタデータ) (2021-02-17T04:47:18Z) - Distributed Scheduling using Graph Neural Networks [38.74504118887024]
無線ネットワークの設計における根本的な問題は、送信を分散的に効率的にスケジュールすることである。
グラフ畳み込みネットワーク(GCN)に基づく分散MWISソルバを提案する。
簡単に言えば、トレーニング可能なGCNモジュールは、greedyソルバを呼び出す前に、ネットワーク重みと結合されたトポロジ対応ノードの埋め込みを学習する。
論文 参考訳(メタデータ) (2020-11-18T18:00:45Z) - Multi-Agent Reinforcement Learning for Adaptive User Association in
Dynamic mmWave Networks [17.295158818748188]
マルチエージェント強化学習に基づくユーザアソシエーションのためのスケーラブルで柔軟なアルゴリズムを提案する。
ユーザーは、ローカルな観察のみに基づいて、ネットワークの総和率を最適化するために、自律的に行動を調整することを学習する独立したエージェントとして振る舞う。
シミュレーションの結果,提案アルゴリズムは無線環境の変化に適応できることを示す。
論文 参考訳(メタデータ) (2020-06-16T10:51:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。