論文の概要: Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss
- arxiv url: http://arxiv.org/abs/2311.12986v2
- Date: Fri, 24 Nov 2023 22:24:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 09:58:38.350230
- Title: Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss
- Title(参考訳): k平均損失を用いた属性付きネットワークのための教師なしグラフアテンションオートエンコーダ
- Authors: Abdelfateh Bekkaira, Slimane Bellaouar and Slimane Oulad-Naoui
- Abstract要約: 我々は、属性付きネットワークにおけるコミュニティ検出のための、教師なしのtextbfGraph Attention textbfAutotextbfEncoder に基づく、シンプルで効率的なクラスタリング指向モデルを提案する。
提案モデルは,ネットワークのトポロジと属性情報の両方から表現を十分に学習し,同時に2つの目的,すなわち再構築とコミュニティ発見に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several natural phenomena and complex systems are often represented as
networks. Discovering their community structure is a fundamental task for
understanding these networks. Many algorithms have been proposed, but recently,
Graph Neural Networks (GNN) have emerged as a compelling approach for enhancing
this task.In this paper, we introduce a simple, efficient, and
clustering-oriented model based on unsupervised \textbf{G}raph Attention
\textbf{A}uto\textbf{E}ncoder for community detection in attributed networks
(GAECO). The proposed model adeptly learns representations from both the
network's topology and attribute information, simultaneously addressing dual
objectives: reconstruction and community discovery. It places a particular
emphasis on discovering compact communities by robustly minimizing clustering
errors. The model employs k-means as an objective function and utilizes a
multi-head Graph Attention Auto-Encoder for decoding the representations.
Experiments conducted on three datasets of attributed networks show that our
method surpasses state-of-the-art algorithms in terms of NMI and ARI.
Additionally, our approach scales effectively with the size of the network,
making it suitable for large-scale applications. The implications of our
findings extend beyond biological network interpretation and social network
analysis, where knowledge of the fundamental community structure is essential.
- Abstract(参考訳): いくつかの自然現象や複雑なシステムはしばしばネットワークとして表現される。
コミュニティ構造を明らかにすることは、これらのネットワークを理解するための基本的な課題である。
本稿では, 属性付きネットワーク(GAECO)におけるコミュニティ検出のための, 教師なしの textbf{G}raph Attention \textbf{A}uto\textbf{E}ncoder に基づく, 単純で効率的かつクラスタリング指向のモデルを提案する。
提案モデルでは,ネットワークのトポロジーと属性情報の両方から表現を学習し,復元とコミュニティ発見という2つの目的を同時に解決する。
クラスタリングエラーを小さくすることで、コンパクトなコミュニティの発見に特に重点を置いている。
このモデルはk-meansを目的関数として使用し、マルチヘッドグラフアテンションオートエンコーダを用いて表現をデコードする。
属性ネットワークの3つのデータセットを用いて実験を行った結果,NMIとARIの3点において,提案手法が最先端のアルゴリズムを上回ることがわかった。
さらに,本手法はネットワーク規模に合わせて効果的にスケールし,大規模アプリケーションに適している。
本研究の意義は,基礎的コミュニティ構造に関する知識が不可欠である生物学的ネットワーク解釈と社会ネットワーク分析に留まらない。
関連論文リスト
- Node Centrality Approximation For Large Networks Based On Inductive
Graph Neural Networks [2.4012886591705738]
ネットワーク分析において、クローズネス中央度(CC)とブロードネス中央度(BC)が重要な指標である。
大規模なネットワーク上での実践的な実装は、その高速な複雑さのため、計算的に要求される。
本稿では,CNCA-IGEモデルを提案する。CNCA-IGEモデルは,CCやBCのメトリクスに基づいてノードをランク付けするインダクティブグラフエンコーダ・デコーダモデルである。
論文 参考訳(メタデータ) (2024-03-08T01:23:12Z) - Topological Neural Networks: Mitigating the Bottlenecks of Graph Neural
Networks via Higher-Order Interactions [1.994307489466967]
この研究は、メッセージパッシングニューラルネットワークにおいて、ネットワークの幅、深さ、グラフトポロジがオーバーカッシング現象に与える影響を明らかにする理論的枠組みから始まる。
この研究は、トポロジカルニューラルネットワークを通して高次相互作用と多関係帰納バイアスへと流れていく。
グラフ注意ネットワークにインスパイアされた2つのトポロジカルアテンションネットワーク(Simplicial and Cell Attention Networks)が提案されている。
論文 参考訳(メタデータ) (2024-02-10T08:26:06Z) - A Unified Framework for Exploratory Learning-Aided Community Detection
Under Topological Uncertainty [16.280950663982107]
META-CODEは、ソーシャルネットワークにおける重複コミュニティを検出する統合フレームワークである。
1)新たな再構築損失によってトレーニングされたグラフニューラルネットワーク(GNN)に基づくノードレベルのコミュニティアフィリエイト埋め込み,2)コミュニティアフィリエイトベースのノードクエリによるネットワーク探索,3)エッジ接続に基づくSiameseニューラルネットワークモデルを用いたネットワーク推論,の3つのステップで構成されている。
論文 参考訳(メタデータ) (2023-04-10T10:22:21Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Anomal-E: A Self-Supervised Network Intrusion Detection System based on
Graph Neural Networks [0.0]
本稿では,自己教師型ネットワーク侵入と異常検出のためのグラフニューラルネットワーク(GNN)の応用について検討する。
GNNは、グラフ構造を学習に組み込んだグラフベースのデータのためのディープラーニングアプローチである。
本稿では, エッジ特徴とグラフトポロジ構造を利用したGNNによる侵入・異常検出手法であるAnomal-Eを提案する。
論文 参考訳(メタデータ) (2022-07-14T10:59:39Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Learning low-rank latent mesoscale structures in networks [1.1470070927586016]
ネットワークにおける低ランクメソスケール構造を記述するための新しい手法を提案する。
いくつかの合成ネットワークモデルと経験的友情、協調、タンパク質-タンパク質相互作用(PPI)ネットワークを使用します。
破損したネットワークから直接学習する潜在モチーフのみを用いて、破損したネットワークを認知する方法を示す。
論文 参考訳(メタデータ) (2021-02-13T18:54:49Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
本研究では,階層型コミュニティ検出の効率向上のために,局所構造ネットワーク特性をプロキシとして利用する方法について検討する。
また,ネットワークプルーニングの性能への影響を,階層的コミュニティ検出をより効率的にするための補助的手法として検証する。
論文 参考訳(メタデータ) (2020-09-15T00:16:12Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Graph Prototypical Networks for Few-shot Learning on Attributed Networks [72.31180045017835]
グラフメタ学習フレームワーク - Graph Prototypeal Networks (GPN) を提案する。
GPNは、属性付きネットワーク上でテキストミータ学習を行い、ターゲット分類タスクを扱うための高度に一般化可能なモデルを導出する。
論文 参考訳(メタデータ) (2020-06-23T04:13:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。