論文の概要: Prediction of short and long-term droughts using artificial neural
networks and hydro-meteorological variables
- arxiv url: http://arxiv.org/abs/2006.02581v1
- Date: Wed, 3 Jun 2020 23:20:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 18:19:57.001959
- Title: Prediction of short and long-term droughts using artificial neural
networks and hydro-meteorological variables
- Title(参考訳): ニューラルネットワークと水-気象変数を用いた短期・長期干ばつ予測
- Authors: Yousef Hassanzadeh, Mohammadvaghef Ghazvinian, Amin Abdi, Saman
Baharvand, Ali Jozaghi
- Abstract要約: ニューラルネットワーク(ANN)のモデルは、標準降水指数(SPI)を異なる時間スケールで使用することにより、短期および長期の干ばつを予測するために使用される。
その結果,全ての水文-気象変数の応用は,異なる時間スケールでのSPIの予測を著しく改善することがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drought is a natural creeping threat with numerous damaging effects in
various aspects of human life. Accurate drought prediction is a promising step
in helping policy makers to set drought risk management strategies. To fulfill
this purpose, choosing appropriate models plays an important role in predicting
approach. In this study, different models of Artificial Neural Network (ANN)
are employed to predict short and long-term of droughts by using Standardized
Precipitation Index (SPI) at different time scales, including 3, 6, 12, 24 and
48 months in Tabriz city, Iran. To this end, different combination of
calculated SPI and time series of various hydro-meteorological variables, such
as precipitation, wind velocity, relative humidity and sunshine hours for years
1992 to 2010 are used to train the ANN models. In order to compare the models
performances, some well-known measures, namely RMSE, Mean Absolute Error (MAE)
and Correlation Coefficient (CC) are utilized in the present study. The results
illustrate that the application of all hydro-meteorological variables
significantly improves the prediction of SPI at different time scales.
- Abstract(参考訳): 干ばつは自然に恐ろしい脅威であり、人間の生活の様々な側面に多くのダメージを与える。
正確な干ばつ予測は、政策立案者が干ばつリスク管理戦略を立案する上で有望なステップだ。
この目的を達成するために、適切なモデルを選択することは、予測アプローチにおいて重要な役割を果たす。
本研究では,イランのタブリズ市で3, 6, 12, 24, 48ヶ月の干ばつを,SPI(Standardized Precipitation Index)を用いて短期および長期の干ばつを予測するために,ANN(Artificial Neural Network)の異なるモデルを用いた。
この目的のために,1992年から2010年の間,降水,風速,相対湿度,日照時間など,計算されたspiと各種水文気象変数の時系列の組み合わせを用いて,アンモデルを訓練した。
モデル性能を比較するために, rmse, 平均絶対誤差 (mae) および相関係数 (cc) などのよく知られた尺度が本研究で活用されている。
その結果,全ての水文-気象変数の応用は,異なる時間スケールでのSPIの予測を著しく改善することがわかった。
関連論文リスト
- Evaluation of deep learning models for Australian climate extremes: prediction of streamflow and floods [0.17999333451993949]
近年、洪水のような気候の極端は、オーストラリアにとって重要な環境と経済の危険を生み出している。
ディープラーニングの手法は、短時間の地平線上で、小規模から中規模の極端な事象を予測することを約束している。
大規模な急激な洪水に対処するアンサンブルベースの機械学習アプローチを提案する。
論文 参考訳(メタデータ) (2024-07-20T23:45:04Z) - Learning from Polar Representation: An Extreme-Adaptive Model for
Long-Term Time Series Forecasting [10.892801642895904]
本稿では,距離重み付き自己正規化ニューラルネットワーク(DAN)を提案する。これは極性表現学習によって強化されたストラムフローの長距離予測のための新しい極性適応モデルである。
実生活における4つの水文流れデータセットにおいて、DANは、最先端の水文時系列予測法と長期時系列予測のための一般的な方法の両方を著しく上回っていることを実証した。
論文 参考訳(メタデータ) (2023-12-14T09:16:01Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
本稿では、Channel Dependent(CD)戦略でトレーニングされたモデルが、Channel Dependent(CD)戦略でトレーニングされたモデルよりも優れていることを示す。
以上の結果から,CD手法は高いキャパシティを持つが,分散ドリフト時系列を正確に予測する堅牢性に欠けることがわかった。
本稿では,CI戦略を超越した正規化(PRReg)による予測残差法(Predict Residuals with Regularization, PRReg)を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:15:33Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Modeling of Pan Evaporation Based on the Development of Machine Learning
Methods [0.0]
気温、風速、日照時間、湿度、太陽放射などの気候変化は蒸発過程に大きな影響を及ぼす可能性がある。
本研究の目的は、毎月のパン蒸発推定をモデル化するための機械学習(ML)モデルの有効性を検討することである。
論文 参考訳(メタデータ) (2021-10-10T10:06:16Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - Crop Yield Prediction Integrating Genotype and Weather Variables Using
Deep Learning [8.786816847837976]
我々は,北米のUniform Soybean Tests (UST) から13年間のデータにまたがる過去のパフォーマンス記録を用いて,複数環境でジェノタイプ応答を検出・予測するために,Long Short Term Memory - Recurrent Neural Network based modelを構築した。
我々は、このディープラーニングフレームワークを「仮説生成ツール」としてデプロイし、GxExM関係を解き放つ。
異なる気候条件下でのダイズおよび他の作物に対するこのアプローチの適用性(感度分析および「What-if」シナリオ)について検討した。
論文 参考訳(メタデータ) (2020-06-24T16:20:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。