Handling missing data in model-based clustering
- URL: http://arxiv.org/abs/2006.02954v1
- Date: Thu, 4 Jun 2020 15:36:31 GMT
- Title: Handling missing data in model-based clustering
- Authors: Alessio Serafini, Thomas Brendan Murphy, Luca Scrucca
- Abstract summary: We propose two methods to fit Gaussian mixtures in the presence of missing data.
Both methods use a variant of the Monte Carlo Expectation-Maximisation algorithm for data augmentation.
We show that the proposed methods outperform the multiple imputation approach, both in terms of clusters identification and density estimation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Mixture models (GMMs) are a powerful tool for clustering,
classification and density estimation when clustering structures are embedded
in the data. The presence of missing values can largely impact the GMMs
estimation process, thus handling missing data turns out to be a crucial point
in clustering, classification and density estimation. Several techniques have
been developed to impute the missing values before model estimation. Among
these, multiple imputation is a simple and useful general approach to handle
missing data. In this paper we propose two different methods to fit Gaussian
mixtures in the presence of missing data. Both methods use a variant of the
Monte Carlo Expectation-Maximisation (MCEM) algorithm for data augmentation.
Thus, multiple imputations are performed during the E-step, followed by the
standard M-step for a given eigen-decomposed component-covariance matrix. We
show that the proposed methods outperform the multiple imputation approach,
both in terms of clusters identification and density estimation.
Related papers
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
Fuzzy clustering algorithms can be roughly categorized into two main groups: Fuzzy C-Means (FCM) based methods and mixture model based methods.
We propose a novel FCM based clustering model that is capable of automatically learning an appropriate membership degree hyper- parameter value.
arXiv Detail & Related papers (2024-05-22T08:15:50Z) - A provable initialization and robust clustering method for general mixture models [6.806940901668607]
Clustering is a fundamental tool in statistical machine learning in the presence of heterogeneous data.
Most recent results focus on optimal mislabeling guarantees when data are distributed around centroids with sub-Gaussian errors.
arXiv Detail & Related papers (2024-01-10T22:56:44Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - K-ARMA Models for Clustering Time Series Data [4.345882429229813]
We present an approach to clustering time series data using a model-based generalization of the K-Means algorithm.
We show how the clustering algorithm can be made robust to outliers using a least-absolute deviations criteria.
We perform experiments on real data which show that our method is competitive with other existing methods for similar time series clustering tasks.
arXiv Detail & Related papers (2022-06-30T18:16:11Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
This paper proposes two strategies to handle missing data for the classification of electroencephalograms.
The first approach estimates the covariance from imputed data with the $k$-nearest neighbors algorithm; the second relies on the observed data by leveraging the observed-data likelihood within an expectation-maximization algorithm.
As results show, the proposed strategies perform better than the classification based on observed data and allow to keep a high accuracy even when the missing data ratio increases.
arXiv Detail & Related papers (2021-10-19T14:24:50Z) - GMOTE: Gaussian based minority oversampling technique for imbalanced
classification adapting tail probability of outliers [0.0]
Data-level approaches mainly use the oversampling methods to solve the problem, such as synthetic minority oversampling Technique (SMOTE)
In this paper, we proposed Gaussian based minority oversampling technique (GMOTE) with a statistical perspective for imbalanced datasets.
When the GMOTE is combined with classification and regression tree (CART) or support vector machine (SVM), it shows better accuracy and F1-Score.
arXiv Detail & Related papers (2021-05-09T07:04:37Z) - Model-based clustering of partial records [11.193504036335503]
We develop clustering methodology through a model-based approach using the marginal density for the observed values.
We compare our algorithm to the corresponding full expectation-maximization (EM) approach that considers the missing values in the incomplete data set.
Simulation studies demonstrate that our approach has favorable recovery of the true cluster partition compared to case deletion and imputation.
arXiv Detail & Related papers (2021-03-30T13:30:59Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
We build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models.
A key contribution of our work is the observation that PSMs are positive semi-definite, and hence can be used to define probabilistically-motivated kernel matrices.
arXiv Detail & Related papers (2020-09-27T14:16:14Z) - Robust M-Estimation Based Bayesian Cluster Enumeration for Real
Elliptically Symmetric Distributions [5.137336092866906]
Robustly determining optimal number of clusters in a data set is an essential factor in a wide range of applications.
This article generalizes so that it can be used with any arbitrary Really Symmetric (RES) distributed mixture model.
We derive a robust criterion for data sets with finite sample size, and also provide an approximation to reduce the computational cost at large sample sizes.
arXiv Detail & Related papers (2020-05-04T11:44:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.