Model-based clustering of partial records
- URL: http://arxiv.org/abs/2103.16336v1
- Date: Tue, 30 Mar 2021 13:30:59 GMT
- Title: Model-based clustering of partial records
- Authors: Emily M. Goren and Ranjan Maitra
- Abstract summary: We develop clustering methodology through a model-based approach using the marginal density for the observed values.
We compare our algorithm to the corresponding full expectation-maximization (EM) approach that considers the missing values in the incomplete data set.
Simulation studies demonstrate that our approach has favorable recovery of the true cluster partition compared to case deletion and imputation.
- Score: 11.193504036335503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partially recorded data are frequently encountered in many applications. In
practice, such datasets are usually clustered by removing incomplete cases or
features with missing values, or by imputing missing values, followed by
application of a clustering algorithm to the resulting altered data set. Here,
we develop clustering methodology through a model-based approach using the
marginal density for the observed values, using a finite mixture model of
multivariate $t$ distributions. We compare our algorithm to the corresponding
full expectation-maximization (EM) approach that considers the missing values
in the incomplete data set and makes a missing at random (MAR) assumption, as
well as case deletion and imputation. Since only the observed values are
utilized, our approach is computationally more efficient than imputation or
full EM. Simulation studies demonstrate that our approach has favorable
recovery of the true cluster partition compared to case deletion and imputation
under various missingness mechanisms, and is more robust to extreme MAR
violations than the full EM approach since it does not use the observed values
to inform those that are missing. Our methodology is demonstrated on a problem
of clustering gamma-ray bursts and is implemented in the
https://github.com/emilygoren/MixtClust R package.
Related papers
- Anomaly Detection Under Uncertainty Using Distributionally Robust
Optimization Approach [0.9217021281095907]
Anomaly detection is defined as the problem of finding data points that do not follow the patterns of the majority.
The one-class Support Vector Machines (SVM) method aims to find a decision boundary to distinguish between normal data points and anomalies.
A distributionally robust chance-constrained model is proposed in which the probability of misclassification is low.
arXiv Detail & Related papers (2023-12-03T06:13:22Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data.
A new EM algorithm is investigated for mixtures of elliptical distributions with the property of handling potential missing data.
Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data.
arXiv Detail & Related papers (2022-01-28T10:01:37Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
We propose a causally-aware imputation algorithm (MIRACLE) for missing data.
MIRACLE iteratively refines the imputation of a baseline by simultaneously modeling the missingness generating mechanism.
We conduct extensive experiments on synthetic and a variety of publicly available datasets to show that MIRACLE is able to consistently improve imputation.
arXiv Detail & Related papers (2021-11-04T22:38:18Z) - Information-Theoretic Generalization Bounds for Iterative
Semi-Supervised Learning [81.1071978288003]
In particular, we seek to understand the behaviour of the em generalization error of iterative SSL algorithms using information-theoretic principles.
Our theoretical results suggest that when the class conditional variances are not too large, the upper bound on the generalization error decreases monotonically with the number of iterations, but quickly saturates.
arXiv Detail & Related papers (2021-10-03T05:38:49Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Distributed Learning of Finite Gaussian Mixtures [21.652015112462]
We study split-and-conquer approaches for the distributed learning of finite Gaussian mixtures.
New estimator is shown to be consistent and retains root-n consistency under some general conditions.
Experiments based on simulated and real-world data show that the proposed split-and-conquer approach has comparable statistical performance with the global estimator.
arXiv Detail & Related papers (2020-10-20T16:17:47Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Categorical anomaly detection in heterogeneous data using minimum
description length clustering [3.871148938060281]
We propose a meta-algorithm for enhancing any MDL-based anomaly detection model to deal with heterogeneous data.
Our experimental results show that using a discrete mixture model provides competitive performance relative to two previous anomaly detection algorithms.
arXiv Detail & Related papers (2020-06-14T14:48:37Z) - Handling missing data in model-based clustering [0.0]
We propose two methods to fit Gaussian mixtures in the presence of missing data.
Both methods use a variant of the Monte Carlo Expectation-Maximisation algorithm for data augmentation.
We show that the proposed methods outperform the multiple imputation approach, both in terms of clusters identification and density estimation.
arXiv Detail & Related papers (2020-06-04T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.