How individual behaviors drive inequality in online community sizes: an
agent-based simulation
- URL: http://arxiv.org/abs/2006.03119v1
- Date: Thu, 4 Jun 2020 20:20:43 GMT
- Title: How individual behaviors drive inequality in online community sizes: an
agent-based simulation
- Authors: Jeremy Foote, Nathan TeBlunthuis, Benjamin Mako Hill, Aaron Shaw
- Abstract summary: Our work bridges the divide by testing whether two influential social mechanisms can also explain the distribution of community sizes.
Using agent-based simulations, we evaluate how well individual-level processes of social exposure and decisions based on individual expected benefits reproduce empirical community size data from Reddit.
Our results also illustrate the potential value of agent-based simulation to online community researchers to both evaluate and bridge individual and group-level theories.
- Score: 8.575789696858477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Why are online community sizes so extremely unequal? Most answers to this
question have pointed to general mathematical processes drawn from physics like
cumulative advantage. These explanations provide little insight into specific
social dynamics or decisions that individuals make when joining and leaving
communities. In addition, explanations in terms of cumulative advantage do not
draw from the enormous body of social computing research that studies
individual behavior. Our work bridges this divide by testing whether two
influential social mechanisms used to explain community joining can also
explain the distribution of community sizes. Using agent-based simulations, we
evaluate how well individual-level processes of social exposure and decisions
based on individual expected benefits reproduce empirical community size data
from Reddit. Our simulations contribute to social computing theory by providing
evidence that both processes together---but neither alone---generate realistic
distributions of community sizes. Our results also illustrate the potential
value of agent-based simulation to online community researchers to both
evaluate and bridge individual and group-level theories.
Related papers
- Generative Agent Simulations of 1,000 People [56.82159813294894]
We present a novel agent architecture that simulates the attitudes and behaviors of 1,052 real individuals.
The generative agents replicate participants' responses on the General Social Survey 85% as accurately as participants replicate their own answers.
Our architecture reduces accuracy biases across racial and ideological groups compared to agents given demographic descriptions.
arXiv Detail & Related papers (2024-11-15T11:14:34Z) - Mixbiotic society measures: Assessment of community well-going as living
system [0.0]
Social isolation is caused by the impoverishment of community (atomism) and fragmentation is caused by the enlargement of in-group (mobism)
This study proposes new mixbiotic society measures to evaluate dynamic communication patterns.
arXiv Detail & Related papers (2023-07-21T14:00:17Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
Social alignment in AI systems aims to ensure that these models behave according to established societal values.
Current language models (LMs) are trained to rigidly replicate their training corpus in isolation.
This work presents a novel training paradigm that permits LMs to learn from simulated social interactions.
arXiv Detail & Related papers (2023-05-26T14:17:36Z) - Flexible social inference facilitates targeted social learning when
rewards are not observable [58.762004496858836]
Groups coordinate more effectively when individuals are able to learn from others' successes.
We suggest that social inference capacities may help bridge this gap, allowing individuals to update their beliefs about others' underlying knowledge and success from observable trajectories of behavior.
arXiv Detail & Related papers (2022-12-01T21:04:03Z) - Picking on the Same Person: Does Algorithmic Monoculture lead to Outcome
Homogenization? [90.35044668396591]
A recurring theme in machine learning is algorithmic monoculture: the same systems, or systems that share components, are deployed by multiple decision-makers.
We propose the component-sharing hypothesis: if decision-makers share components like training data or specific models, then they will produce more homogeneous outcomes.
We test this hypothesis on algorithmic fairness benchmarks, demonstrating that sharing training data reliably exacerbates homogenization.
We conclude with philosophical analyses of and societal challenges for outcome homogenization, with an eye towards implications for deployed machine learning systems.
arXiv Detail & Related papers (2022-11-25T09:33:11Z) - This Must Be the Place: Predicting Engagement of Online Communities in a
Large-scale Distributed Campaign [70.69387048368849]
We study the behavior of communities with millions of active members.
We develop a hybrid model, combining textual cues, community meta-data, and structural properties.
We demonstrate the applicability of our model through Reddit's r/place a large-scale online experiment.
arXiv Detail & Related papers (2022-01-14T08:23:16Z) - Collective eXplainable AI: Explaining Cooperative Strategies and Agent
Contribution in Multiagent Reinforcement Learning with Shapley Values [68.8204255655161]
This study proposes a novel approach to explain cooperative strategies in multiagent RL using Shapley values.
Results could have implications for non-discriminatory decision making, ethical and responsible AI-derived decisions or policy making under fairness constraints.
arXiv Detail & Related papers (2021-10-04T10:28:57Z) - Interpretable Stochastic Block Influence Model: measuring social
influence among homophilous communities [4.563449647618151]
Decision-making on networks can be explained by both homophily and social influence.
Social influence can be reasoned through role theory, which indicates that the influences among individuals depend on their roles and the behavior of interest.
We propose a generative model named Block Influence Model and jointly analyze both the network formation and the behavioral influence within and between different communities.
arXiv Detail & Related papers (2020-06-01T15:49:22Z) - Stochastic Multi-Agent-Based Model to Measure Community Resilience-Part
2: Simulation Results [2.6277263675268205]
We investigate the effect of empathy, cooperation, coordination, flexibility, and experience of individuals on their mental well-being.
We use a multi-agent-based numerical framework for estimating the social well-being of a community when facing natural disasters.
The results show that a high level of cooperation can positively change individual behavior.
arXiv Detail & Related papers (2020-04-02T01:56:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.