Generative Agent Simulations of 1,000 People
- URL: http://arxiv.org/abs/2411.10109v1
- Date: Fri, 15 Nov 2024 11:14:34 GMT
- Title: Generative Agent Simulations of 1,000 People
- Authors: Joon Sung Park, Carolyn Q. Zou, Aaron Shaw, Benjamin Mako Hill, Carrie Cai, Meredith Ringel Morris, Robb Willer, Percy Liang, Michael S. Bernstein,
- Abstract summary: We present a novel agent architecture that simulates the attitudes and behaviors of 1,052 real individuals.
The generative agents replicate participants' responses on the General Social Survey 85% as accurately as participants replicate their own answers.
Our architecture reduces accuracy biases across racial and ideological groups compared to agents given demographic descriptions.
- Score: 56.82159813294894
- License:
- Abstract: The promise of human behavioral simulation--general-purpose computational agents that replicate human behavior across domains--could enable broad applications in policymaking and social science. We present a novel agent architecture that simulates the attitudes and behaviors of 1,052 real individuals--applying large language models to qualitative interviews about their lives, then measuring how well these agents replicate the attitudes and behaviors of the individuals that they represent. The generative agents replicate participants' responses on the General Social Survey 85% as accurately as participants replicate their own answers two weeks later, and perform comparably in predicting personality traits and outcomes in experimental replications. Our architecture reduces accuracy biases across racial and ideological groups compared to agents given demographic descriptions. This work provides a foundation for new tools that can help investigate individual and collective behavior.
Related papers
- Spontaneous Emergence of Agent Individuality through Social Interactions in LLM-Based Communities [0.0]
We study the emergence of agency from scratch by using Large Language Model (LLM)-based agents.
By analyzing this multi-agent simulation, we report valuable new insights into how social norms, cooperation, and personality traits can emerge spontaneously.
arXiv Detail & Related papers (2024-11-05T16:49:33Z) - Designing LLM-Agents with Personalities: A Psychometric Approach [0.47498241053872914]
This research introduces a novel methodology for assigning quantifiable, controllable and psychometrically validated personalities to Agents.
It seeks to overcome the constraints of human subject studies, proposing Agents as an accessible tool for social science inquiry.
arXiv Detail & Related papers (2024-10-25T01:05:04Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - Understanding Your Agent: Leveraging Large Language Models for Behavior
Explanation [7.647395374489533]
We propose an approach to generate natural language explanations for an agent's behavior based only on observations of states and actions.
We show that our approach generates explanations as helpful as those produced by a human domain expert.
arXiv Detail & Related papers (2023-11-29T20:16:23Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - Measuring the Effect of Influential Messages on Varying Personas [67.1149173905004]
We present a new task, Response Forecasting on Personas for News Media, to estimate the response a persona might have upon seeing a news message.
The proposed task not only introduces personalization in the modeling but also predicts the sentiment polarity and intensity of each response.
This enables more accurate and comprehensive inference on the mental state of the persona.
arXiv Detail & Related papers (2023-05-25T21:01:00Z) - Generative Agents: Interactive Simulacra of Human Behavior [86.1026716646289]
We introduce generative agents--computational software agents that simulate believable human behavior.
We describe an architecture that extends a large language model to store a complete record of the agent's experiences.
We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims.
arXiv Detail & Related papers (2023-04-07T01:55:19Z) - Modeling Bounded Rationality in Multi-Agent Simulations Using Rationally
Inattentive Reinforcement Learning [85.86440477005523]
We study more human-like RL agents which incorporate an established model of human-irrationality, the Rational Inattention (RI) model.
RIRL models the cost of cognitive information processing using mutual information.
We show that using RIRL yields a rich spectrum of new equilibrium behaviors that differ from those found under rational assumptions.
arXiv Detail & Related papers (2022-01-18T20:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.