A liquid nitrogen cooled superconducting transition edge sensor with
ultra-high responsivity and GHz operation speeds
- URL: http://arxiv.org/abs/2006.03130v1
- Date: Thu, 4 Jun 2020 21:00:11 GMT
- Title: A liquid nitrogen cooled superconducting transition edge sensor with
ultra-high responsivity and GHz operation speeds
- Authors: Paul Seifert, Jose Ramon Duran Retamal, Rafael Luque Merino, Hanan
Herzig Sheinfux, John N. Moore, Mohammed Ali Aamir, Takashi Taniguchi, Kenji
Wantanabe, Kazuo Kadowaki, Massimo Artiglia, Marco Romagnoli and Dmitri K.
Efetov
- Abstract summary: Photodetectors based on nano-structured superconducting thin films are some of the most sensitive quantum sensors and are key enabling technologies in such broad areas as quantum information, quantum computation and radio-astronomy.
Here, we demonstrate a nitrogen cooled superconducting transition edge sensor, which shows orders of magnitude improved performance characteristics of any superconducting detector operated above 77K.
It is based on van der Waals heterostructures of the high temperature superconductor Bi2Sr2CaCu2O8, which are shaped into nano-wires with ultra-small form factor.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photodetectors based on nano-structured superconducting thin films are
currently some of the most sensitive quantum sensors and are key enabling
technologies in such broad areas as quantum information, quantum computation
and radio-astronomy. However, their broader use is held back by the low
operation temperatures which require expensive cryostats. Here, we demonstrate
a nitrogen cooled superconducting transition edge sensor, which shows orders of
magnitude improved performance characteristics of any superconducting detector
operated above 77K, with a responsivity of 9.61x10^4 V/W, noise equivalent
power of 15.9 fW/Hz-1/2 and operation speeds up to GHz frequencies. It is based
on van der Waals heterostructures of the high temperature superconductor
Bi2Sr2CaCu2O8, which are shaped into nano-wires with ultra-small form factor.
To highlight the versatility of the detector we demonstrate its fabrication and
operation on a telecom grade SiN waveguide chip. Our detector significantly
relaxes the demands of practical applications of superconducting detectors and
displays its huge potential for photonics based quantum applications.
Related papers
- A spin-refrigerated cavity quantum electrodynamic sensor [1.6713959634020665]
Quantum sensors based on solid-state defects, in particular nitrogen-vacancy centers in diamond, enable precise measurement of magnetic fields, temperature, rotation, and electric fields.
We introduce a cavity quantum electrodynamic (cQED) hybrid system operating in the strong coupling regime, which enables high readout fidelity of an NV ensemble.
We demonstrate a broadband sensitivity of 580 fT/$sqrtmathrmHz$ around 15 kHz in ambient conditions.
arXiv Detail & Related papers (2024-04-16T14:56:50Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - Single-photon detection using high-temperature superconductors [0.0]
Superconducting nanowires (SNWs) out of thin flakes of Bi$$Sr$CaCu$$$O$_8+delta$ and La$_$Sr$_0.45$CuO$_4$/La$CuO$_4$ demonstrated single-photon response up to $25$ and $8$ K.
arXiv Detail & Related papers (2022-08-11T07:24:45Z) - Two-dimensional cuprate nanodetector with single photon sensitivity at T
= 20 K [0.33727511459109777]
Superconducting thin films with low TC limit their operation temperature below 4K.
In this work, we demonstrate proof-of-concept nanodetectors based on exfoliated, two-dimensional cuprate superconductor Bi2Sr2CaCu2O8-delta (BSCCO)
We realize the elusive prospect of single-photon sensitivity on a high-TC nanodetector thanks to a novel approach, combining van der Waals fabrication techniques and a non-invasive nanopatterning based on light ion irradiation.
arXiv Detail & Related papers (2022-08-09T21:19:50Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Multifunctional Superconducting Nanowire Quantum Sensors [2.8179433392269817]
Superconducting nanowire single photon detectors (SNSPDs) offer high-quantum-efficiency and low-dark-count-rate single photon detection.
Here, we demonstrate robust performance of amorphous SNSPDs in magnetic fields of up to $pm 6$ T with a negligible dark count rate.
We also show that the SNSPD can be used as a magnetometer with sensitivity of better than 100 $mathrmmu T/sqrtHz$ and as a thermometer with sensitivity of 20 $mathrmmu K/sqrtHz
arXiv Detail & Related papers (2021-03-17T20:23:59Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Cavity piezo-mechanics for superconducting-nanophotonic quantum
interface [6.047107581901681]
We report an integrated superconducting cavity piezo-optomechanical platform where 10-GHz phonons are resonantly coupled with photons in a superconducting and a nanophotonic cavities.
We demonstrate coherent interactions at cryogenic temperatures via the observation of efficient microwave-optical photon conversion.
This hybrid interface makes a substantial step towards quantum communication at large scale, as well as novel explorations in microwave-optical photon entanglement and quantum sensing mediated by gigahertz phonons.
arXiv Detail & Related papers (2020-01-26T16:33:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.