Multifunctional Superconducting Nanowire Quantum Sensors
- URL: http://arxiv.org/abs/2103.09896v1
- Date: Wed, 17 Mar 2021 20:23:59 GMT
- Title: Multifunctional Superconducting Nanowire Quantum Sensors
- Authors: Benjamin J Lawrie, Claire E. Marvinney, Yun-Yi Pai, Matthew A.
Feldman, Jie Zhang, Aaron J. Miller, Chengyun Hua, Eugene Dumitrescu, G\'abor
B. Hal\'asz
- Abstract summary: Superconducting nanowire single photon detectors (SNSPDs) offer high-quantum-efficiency and low-dark-count-rate single photon detection.
Here, we demonstrate robust performance of amorphous SNSPDs in magnetic fields of up to $pm 6$ T with a negligible dark count rate.
We also show that the SNSPD can be used as a magnetometer with sensitivity of better than 100 $mathrmmu T/sqrtHz$ and as a thermometer with sensitivity of 20 $mathrmmu K/sqrtHz
- Score: 2.8179433392269817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superconducting nanowire single photon detectors (SNSPDs) offer
high-quantum-efficiency and low-dark-count-rate single photon detection. In a
growing number of cases, large magnetic fields are being incorporated into
quantum microscopes, nanophotonic devices, and sensors for nuclear and
high-energy physics that rely on SNSPDs, but superconducting devices generally
operate poorly in large magnetic fields. Here, we demonstrate robust
performance of amorphous SNSPDs in magnetic fields of up to $\pm 6$ T with a
negligible dark count rate and unchanged quantum efficiency at typical bias
currents. Critically, we also show that in the electrothermal oscillation
regime, the SNSPD can be used as a magnetometer with sensitivity of better than
100 $\mathrm{\mu T/\sqrt{Hz}}$ and as a thermometer with sensitivity of 20
$\mathrm{\mu K/\sqrt{Hz}}$ at 1 K. Thus, a single photon detector integrated
into a quantum device can be used as a multifunctional quantum sensor capable
of describing the temperature and magnetic field on-chip simply by varying the
bias current to change the operating modality from single photon detection to
thermometry or magnetometry.
Related papers
- Noise Mitigation in Single Microwave Photon Counting by Cascaded Quantum Measurements [32.73124984242397]
Single microwave photon detectors (SMPDs) have only recently been demonstrated.
These detectors offer a substantial advantage over quantum-limited amplification schemes.
We report an intrinsic sensitivity of $8(1)times10-24textW/sqrttextHz$, with an operational sensitivity of $5.9(6)times 10-23textW/sqrttextHz$ limited by thermal photons in the input line.
arXiv Detail & Related papers (2025-02-20T18:26:48Z) - Interfacing superconducting nanowire single photon detectors with cryogenic opto-electronics for quantum photonic applications [0.9374652839580183]
Interfacing single-photon detectors with active photonic components is a cornerstone photonic quantum technology.
We describe how the output signal of commercial superconducting nanowire single-photon detectors can be used in situ to drive photonic components such as lasers and electro-optic modulators, co-located in the cryostat.
arXiv Detail & Related papers (2025-01-14T14:01:55Z) - A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)
The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.
We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Resonant two-laser spin-state spectroscopy of a negatively charged
quantum dot-microcavity system with a cold permanent magnet [0.0]
We show a compact cryogenically compatible SmCo magnet design that delivers 475 mT in-plane Voigt geometry magnetic field at 5 K.
This quantum dot is embedded in a birefringent high-finesse optical micro-cavity which enables efficient collection of single photons.
arXiv Detail & Related papers (2023-03-05T20:10:49Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Sub-micron spin-based magnetic field imaging with an organic light
emitting diode [0.0]
We demonstrate an integrated organic light emitting diode (OLED) based quantum sensor for magnetic field imaging.
By considering the monolithic OLED as an array of individual virtual sensors, we achieve sub-micron magnetic field mapping with field sensitivity of 160 $mu$T Hz$-1/2$ um$-2$.
arXiv Detail & Related papers (2022-07-06T07:10:16Z) - Single-quadrature quantum magnetometry in cavity electromagnonics [0.0]
Scheme of ultra-sensitive magnetometer in the cavity quantum electromagnonics is proposed.
Intracavity microwave mode coupled to a magnonic mode via magnetic dipole interaction is proposed.
The estimated theoretical sensitivity of the proposed magnetic amplifier-sensor is approximately in the order of $10-18T/sqrtHz$ which is competitive compared to the current state-of-the-art magnetometers.
arXiv Detail & Related papers (2020-11-11T21:23:19Z) - Position Sensitive Response of a Single-Pixel Large-Area SNSPD [58.720142291102135]
Superconducting nanowire single photon detectors (SNSPDs) are typically used as single-mode-fiber-coupled single-pixel detectors.
Large area detectors are increasingly critical for applications ranging from microscopy to free-space quantum communications.
We explore changes in the rising edge of the readout pulse for large-area SNSPDs as a function of the bias current, optical spot size on the detector, and number of photons per pulse.
arXiv Detail & Related papers (2020-05-29T23:33:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.