A highly-sensitive broadband superconducting thermoelectric
single-photon detector
- URL: http://arxiv.org/abs/2302.02933v1
- Date: Mon, 6 Feb 2023 17:08:36 GMT
- Title: A highly-sensitive broadband superconducting thermoelectric
single-photon detector
- Authors: Federico Paolucci and Gaia Germanese and Alessandro Braggio and
Francesco Giazotto
- Abstract summary: A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a passive single-photon detector based on the bipolar
thermoelectric effect occurring in tunnel junctions between two different
superconductors thanks to spontaneous electron-hole symmetry breaking. Our
thermoelectric detector (TED) converts a finite temperature difference caused
by the absorption of a single photon into an open circuit thermovoltage.
Designed with feasible parameters, our TED is able to reveal single-photons of
frequency ranging from about 15 GHz to about 150 PHz depending on the chosen
design and materials. In particular, this detector is expected to show values
of signal-to-noise ratio SNR about 15 at {\nu} = 50 GHz when operated at a
temperature of 10 mK. Interestingly, this device can be viewed as a digital
single-photon detector, since it generates an almost constant voltage VS for
the full operation energies. Our TED can reveal single photons in a frequency
range wider than 4 decades with the possibility to discern the energy of the
incident photon by measuring the time persistence of the generated
thermovoltage. Its broadband operation suggests that our TED could find
practical applications in several fields of quantum science and technology,
such as quantum computing, telecommunications, optoelectronics, THz
spectroscopy and astro-particle physics.
Related papers
- Bandwidth-tunable Telecom Single Photons Enabled by Low-noise Optomechanical Transduction [45.37752717923078]
Single-photon sources are of fundamental importance to emergent quantum technologies.
Nano-structured optomechanical crystals provide an attractive platform for single photon generation.
Optical absorption heating has thus far prevented these systems from being widely used in practical applications.
arXiv Detail & Related papers (2024-10-14T18:00:00Z) - Room temperature single-photon terahertz detection with thermal Rydberg
atoms [8.625885970682884]
Single-photon terahertz (THz) detection is one of the most demanding technology for a variety of fields and could lead to many breakthroughs.
Here, we demonstrate, for the first time, the room temperature THz detector at single-photon levels based on nonlinear wave mixing in thermal Rydberg atomic vapor.
arXiv Detail & Related papers (2024-03-09T08:30:35Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - Stepping closer to pulsed single microwave photon detectors for axions
search [0.0]
Axions detection requires the ultimate sensitivity down to the single photon limit.
We follow two promising approaches that both rely on the use of superconducting devices based on the Josephson effect.
Once optimized, both the devices have the potential to reach single photon sensitivity.
arXiv Detail & Related papers (2023-02-15T09:50:34Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Revealing the ultra-sensitive calorimetric properties of
supercon-ducting magic-angle twisted bilayer graphene [0.0]
superconducting phase of magic-angle twisted bilayer graphene (MATBG)1 has been predicted to possess extraordinary thermal properties.
We reveal the ultra-sensitive calorimetric properties of a superconducting MATBG device, by monitoring its temperature dependent critical current Ic.
This establishes superconducting MATBG as a revolutionizing active material for ultra-sensitive photon-detection applications.
arXiv Detail & Related papers (2021-11-16T19:13:20Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Multifunctional Superconducting Nanowire Quantum Sensors [2.8179433392269817]
Superconducting nanowire single photon detectors (SNSPDs) offer high-quantum-efficiency and low-dark-count-rate single photon detection.
Here, we demonstrate robust performance of amorphous SNSPDs in magnetic fields of up to $pm 6$ T with a negligible dark count rate.
We also show that the SNSPD can be used as a magnetometer with sensitivity of better than 100 $mathrmmu T/sqrtHz$ and as a thermometer with sensitivity of 20 $mathrmmu K/sqrtHz
arXiv Detail & Related papers (2021-03-17T20:23:59Z) - A millimeter-wave Bell Test using a ferrite parametric amplifier and a
homodyne interferometer [0.0]
The yttrium iron garnet (YIG) ferrite is an ideal material for the creation of entangled photons.
The proposed architecture may enable YIG quantum technology-based sensors to be developed.
arXiv Detail & Related papers (2020-02-02T17:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.