Earnings Prediction with Deep Learning
- URL: http://arxiv.org/abs/2006.03132v2
- Date: Mon, 12 Oct 2020 09:44:18 GMT
- Title: Earnings Prediction with Deep Learning
- Authors: Lars Elend, Sebastian A. Tideman, Kerstin Lopatta, Oliver Kramer
- Abstract summary: We compare long-term short-term memory (LSTM) networks to temporal convolution network (TCNs) in the prediction of future earnings per share (EPS)
For a broad sample of US firms, we find that both LSTMs outperform the naive persistent model with up to 30.0% more accurate predictions, while TCNs achieve and an improvement of 30.8%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the financial sector, a reliable forecast the future financial performance
of a company is of great importance for investors' investment decisions. In
this paper we compare long-term short-term memory (LSTM) networks to temporal
convolution network (TCNs) in the prediction of future earnings per share
(EPS). The experimental analysis is based on quarterly financial reporting data
and daily stock market returns. For a broad sample of US firms, we find that
both LSTMs outperform the naive persistent model with up to 30.0% more accurate
predictions, while TCNs achieve and an improvement of 30.8%. Both types of
networks are at least as accurate as analysts and exceed them by up to 12.2%
(LSTM) and 13.2% (TCN).
Related papers
- Your AI, Not Your View: The Bias of LLMs in Investment Analysis [55.328782443604986]
Large Language Models (LLMs) face frequent knowledge conflicts due to discrepancies between pre-trained parametric knowledge and real-time market data.<n>This paper offers the first quantitative analysis of confirmation bias in LLM-based investment analysis.<n>We observe a consistent preference for large-cap stocks and contrarian strategies across most models.
arXiv Detail & Related papers (2025-07-28T16:09:38Z) - Forecasting Nigerian Equity Stock Returns Using Long Short-Term Memory Technique [0.0]
The predictability of equity stock returns can boost investor confidence, but it remains a difficult task.<n>To address this issue, a study was conducted using a Long Short-term Memory (LSTM) model to predict future stock market movements.<n>The model was evaluated using performance metrics and compared with other deep learning models like Artificial and Convolutional Neural Networks (CNN)
arXiv Detail & Related papers (2025-05-27T11:34:07Z) - Leveraging Fundamental Analysis for Stock Trend Prediction for Profit [0.0]
This paper investigates the application of machine learning models, Long Short-Term Memory (LSTM), one-dimensional Convolutional Neural Networks (1D CNN), and Logistic Regression (LR) for predicting stock trends based on fundamental analysis.
We employ key financial ratios and the Discounted Cash Flow (DCF) model to formulate two prediction tasks: Annual Stock Price Difference (ASPD) and Difference between Current Stock Price and Intrinsic Value (CSPDIV)
Our results demonstrate that LR models outperform CNN and LSTM models, achieving an average test accuracy of 74.66% for ASPD and 72.85% for DCSPIV
arXiv Detail & Related papers (2024-10-04T20:36:19Z) - Enhancing Financial Market Predictions: Causality-Driven Feature Selection [3.7426958478253254]
FinSen dataset integrates economic and financial news articles from 197 countries with stock market data.
Our study leverages causally validated sentiment scores and LSTM models to enhance market forecast accuracy and reliability.
arXiv Detail & Related papers (2024-08-02T04:40:15Z) - Exploring Sectoral Profitability in the Indian Stock Market Using Deep Learning [0.0]
The study builds upon existing literature on stock price prediction methods, emphasizing the shift toward machine learning and deep learning approaches.
Using historical stock prices of 180 stocks across 18 sectors listed on the NSE, India, the LSTM model predicts future prices.
Results demonstrate the efficacy of the LSTM model in accurately predicting stock prices and informing investment decisions.
arXiv Detail & Related papers (2024-05-28T17:55:54Z) - Earnings Prediction Using Recurrent Neural Networks [0.0]
This study develops a neural network to forecast future firm earnings, using four decades of financial data.
It addresses analysts' coverage gaps and potentially revealing hidden insights.
It is able to produce both fiscal-year-end and quarterly earnings predictions.
arXiv Detail & Related papers (2023-11-10T13:04:34Z) - Predictive AI for SME and Large Enterprise Financial Performance
Management [0.0]
I introduce a new set of financial and macroeconomic ratios that supplement standard ratios of Balance Sheet and Income Statement.
I also provide a set of supervised learning models (ML Regressors and Neural Networks) and Bayesian models to predict company performance.
I conclude that the new proposed variables improve model accuracy when used in tandem with standard industry ratios.
arXiv Detail & Related papers (2023-09-22T11:04:32Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Should You Take Investment Advice From WallStreetBets? A Data-Driven
Approach [37.86739837901986]
Reddit's WallStreetBets (WSB) community has come to prominence in light of its notable role in affecting the stock prices of what are now referred to as meme stocks.
This paper analyses WSB data spanning from January 2019 to April 2021 in order to assess how successful an investment strategy relying on the community's recommendations could have been.
arXiv Detail & Related papers (2021-05-06T14:47:03Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - Neural Networks and Value at Risk [59.85784504799224]
We perform Monte-Carlo simulations of asset returns for Value at Risk threshold estimation.
Using equity markets and long term bonds as test assets, we investigate neural networks.
We find our networks when fed with substantially less data to perform significantly worse.
arXiv Detail & Related papers (2020-05-04T17:41:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.