論文の概要: Analyzing Differentiable Fuzzy Implications
- arxiv url: http://arxiv.org/abs/2006.03472v1
- Date: Thu, 4 Jun 2020 15:34:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 09:44:29.612239
- Title: Analyzing Differentiable Fuzzy Implications
- Title(参考訳): 異なるファジィ含意の分析
- Authors: Emile van Krieken, Erman Acar, Frank van Harmelen
- Abstract要約: 本研究では,ファジィ論理文からの含意が,異なる場面でどのように振る舞うかを考察する。
様々なファジィな含意が、最もよく知られているものも含めて、異なる学習環境での使用に非常に適していないことが判明した。
我々は,この現象に対処するために,新しいファジィ含意(sigmoidal含意(sigmoidal含意))を導入した。
- 参考スコア(独自算出の注目度): 3.4806267677524896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combining symbolic and neural approaches has gained considerable attention in
the AI community, as it is often argued that the strengths and weaknesses of
these approaches are complementary. One such trend in the literature are weakly
supervised learning techniques that employ operators from fuzzy logics. In
particular, they use prior background knowledge described in such logics to
help the training of a neural network from unlabeled and noisy data. By
interpreting logical symbols using neural networks (or grounding them), this
background knowledge can be added to regular loss functions, hence making
reasoning a part of learning.
In this paper, we investigate how implications from the fuzzy logic
literature behave in a differentiable setting. In such a setting, we analyze
the differences between the formal properties of these fuzzy implications. It
turns out that various fuzzy implications, including some of the most
well-known, are highly unsuitable for use in a differentiable learning setting.
A further finding shows a strong imbalance between gradients driven by the
antecedent and the consequent of the implication. Furthermore, we introduce a
new family of fuzzy implications (called sigmoidal implications) to tackle this
phenomenon. Finally, we empirically show that it is possible to use
Differentiable Fuzzy Logics for semi-supervised learning, and show that
sigmoidal implications outperform other choices of fuzzy implications.
- Abstract(参考訳): シンボリックアプローチとニューラルアプローチの組み合わせは、aiコミュニティでかなりの注目を集めており、これらのアプローチの強みと弱みは相補的であるとしばしば主張されている。
文学におけるそのような傾向の1つは、ファジィ論理の演算子を用いる弱い教師付き学習技術である。
特に、これらのロジックで記述された事前のバックグラウンド知識を使用して、ラベルのないノイズの多いデータからニューラルネットワークのトレーニングを支援する。
ニューラルネットワークを使って論理記号を解釈することで、この背景知識を正規損失関数に追加することができるため、推論は学習の一部となる。
本稿では,ファジィ論理文学からの影響が微分可能環境でどのように振る舞うかを検討する。
このような設定で、これらのファジィ含意の形式的性質の違いを分析する。
様々なファジィな意味、特に最も有名なものは、異なる学習環境での使用には不適であることが判明した。
さらなる発見は、先行者によって駆動される勾配と含意の結果としての強い不均衡を示す。
さらに,この現象に取り組むために,新たなファジィ・インジェクション(sgmoidal implications)のファミリーを導入する。
最後に,半教師付き学習に微分可能なファジィ論理を用いることが可能であることを実証的に示し,シグモイド的意味論がファジィ的意味論の他の選択肢よりも優れていることを示す。
関連論文リスト
- Three Pathways to Neurosymbolic Reinforcement Learning with
Interpretable Model and Policy Networks [4.242435932138821]
我々は、解釈可能なセマンティクスをアーキテクチャに直接組み込むニューラルネットワークのクラスについて研究する。
我々は、論理、シミュレーション、学習を組み合わせることの潜在的な難しさと重要な難しさを明らかにし、強調する。
論文 参考訳(メタデータ) (2024-02-07T23:00:24Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Logic-induced Diagnostic Reasoning for Semi-supervised Semantic
Segmentation [85.12429517510311]
LogicDiagは、セマンティックセグメンテーションのためのニューラルネットワークによる半教師付き学習フレームワークである。
私たちの重要な洞察は、記号的知識によって識別される擬似ラベル内の衝突は、強いが一般的に無視される学習信号として機能する、ということです。
本稿では,論理規則の集合として意味論的概念の構造的抽象化を定式化するデータ・ハングリーセグメンテーションシナリオにおけるLogicDiagの実践的応用について紹介する。
論文 参考訳(メタデータ) (2023-08-24T06:50:07Z) - Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces [20.260546238369205]
ニューラルネットワークのパターン認識能力とシンボリック推論と背景知識を組み合わせたフレームワークを提案する。
ニューラルアルゴリズム推論」アプローチ [DeepMind 2020] からインスピレーションを得て、問題固有のバックグラウンド知識を使用します。
我々は、RAVENのプログレッシブ・マトリクスにおける視覚的類似性の問題でこれを検証し、人間のパフォーマンスと競合する精度を実現する。
論文 参考訳(メタデータ) (2022-09-19T04:03:20Z) - Reduced Implication-bias Logic Loss for Neuro-Symbolic Learning [11.343715006460577]
異なる演算子は、バックプロパゲーション中に有意なバイアスをもたらし、ニューロ・シンボリック学習の性能を低下させる可能性がある。
本稿では,バイアス付き損失関数をtextitReduced Implication-bias Logic Loss に変換する方法を提案する。
経験的研究により、RILLはバイアスド論理損失関数よりも大幅に改善できることが示された。
論文 参考訳(メタデータ) (2022-08-14T11:57:46Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
我々は、ニューラルネットワークに事前論理的知識を注入するニューラルネットワークアーキテクチャであるKENNに焦点を当てる。
本稿では,関係データに対するKENNの拡張を提案する。
論文 参考訳(メタデータ) (2022-05-31T13:00:34Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
我々は最近提案された論理ニューラルネットワーク(LNN)を用いた学習規則を提案する。
他のものと比較して、LNNは古典的なブール論理と強く結びついている。
標準ベンチマークタスクの実験では、LNNルールが極めて解釈可能であることを確認した。
論文 参考訳(メタデータ) (2021-12-06T19:38:30Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Analyzing Differentiable Fuzzy Logic Operators [3.4806267677524896]
ファジィ論理文からの論理演算子の大規模な集合が、微分可能な学習環境でどのように振る舞うかを考察する。
半教師付き学習において微分可能なファジィ論理を用いることが可能であることを示し、実際に異なる演算子がどのように振る舞うかを比較する。
論文 参考訳(メタデータ) (2020-02-14T16:11:36Z) - T-Norms Driven Loss Functions for Machine Learning [19.569025323453257]
ニューラルシンボリックアプローチのクラスは、事前の知識を表現するための一階述語論理に基づいている。
本稿では,これらのニューラルシンボリック学習タスクを表現する損失関数を曖昧に決定できることを示す。
論文 参考訳(メタデータ) (2019-07-26T10:22:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。