論文の概要: Discriminative Attribution from Counterfactuals
- arxiv url: http://arxiv.org/abs/2109.13412v1
- Date: Tue, 28 Sep 2021 00:53:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-30 02:50:03.287970
- Title: Discriminative Attribution from Counterfactuals
- Title(参考訳): 偽物による差別的帰属
- Authors: Nils Eckstein, Alexander S. Bates, Gregory S.X.E. Jefferis, Jan Funke
- Abstract要約: 本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
- 参考スコア(独自算出の注目度): 64.94009515033984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method for neural network interpretability by combining feature
attribution with counterfactual explanations to generate attribution maps that
highlight the most discriminative features between pairs of classes. We show
that this method can be used to quantitatively evaluate the performance of
feature attribution methods in an objective manner, thus preventing potential
observer bias. We evaluate the proposed method on three diverse datasets,
including a challenging artificial dataset and real-world biological data. We
show quantitatively and qualitatively that the highlighted features are
substantially more discriminative than those extracted using conventional
attribution methods and argue that this type of explanation is better suited
for understanding fine grained class differences as learned by a deep neural
network.
- Abstract(参考訳): 本稿では,特徴帰属と反事実説明を組み合わせて,クラス間で最も識別的な特徴を強調する帰属マップを生成する手法を提案する。
本手法は,特徴帰属法の性能を客観的に定量的に評価することで,潜在的なオブザーババイアスを防止できることを示す。
提案手法を,挑戦的な人工データセットと実世界の生物データを含む3つの多様なデータセットで評価する。
従来の帰属法よりも強調特徴がかなり差別的であることを定量的に定性的に示し、このタイプの説明はディープニューラルネットワークが学習した微細なクラス差を理解するのに適していると論じる。
関連論文リスト
- The Susceptibility of Example-Based Explainability Methods to Class Outliers [3.748789746936121]
本研究は,ブラックボックス機械学習モデルにおける実例に基づく説明可能性手法の有効性に及ぼすクラスアウトレーヤの影響について検討する。
本稿では,特に実例に基づく手法の正当性や妥当性などの既存の説明可能性評価尺度を改訂し,新しい尺度,識別可能性を導入する。
これらの指標を用いて、クラス外れを抑えようとする者を含む、現在の例に基づく説明可能性手法の欠点を強調した。
論文 参考訳(メタデータ) (2024-07-30T09:20:15Z) - Simple and Interpretable Probabilistic Classifiers for Knowledge Graphs [0.0]
本稿では,単純な信念ネットワークの学習に基づく帰納的アプローチについて述べる。
このようなモデルを(確率的な)公理(あるいは規則)に変換する方法を示す。
論文 参考訳(メタデータ) (2024-07-09T17:05:52Z) - Toward Understanding the Disagreement Problem in Neural Network Feature Attribution [0.8057006406834466]
ニューラルネットワークは 複雑なパターンと関係を 生のデータから識別する
これらのブラックボックスモデルの内部動作を理解することは、依然として難しいが、高い意思決定には不可欠である。
我々の研究は、説明の基本的な、分布的な振る舞いを調査することによって、この混乱に対処する。
論文 参考訳(メタデータ) (2024-04-17T12:45:59Z) - Neural-based classification rule learning for sequential data [0.0]
本稿では,ルールに基づく二項分類のための局所パターンとグローバルパターンの両方を識別する,新しい可微分完全解釈法を提案する。
解釈可能なニューラルネットワークを備えた畳み込みバイナリニューラルネットワークと、動的に強化された間隔に基づくトレーニング戦略で構成されている。
合成データセットおよびオープンソースペプチドデータセットに対するアプローチの有効性と有用性を示す。
論文 参考訳(メタデータ) (2023-02-22T11:05:05Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Concurrent Discrimination and Alignment for Self-Supervised Feature
Learning [52.213140525321165]
既存の自己指導型学習手法は,(1)どの特徴が分離されるべきかを明確に示すこと,あるいは(2)どの特徴が閉じるべきかを明確に示すこと,のいずれかのプリテキストタスクを用いて学習する。
本研究では,識別・調整手法の正の側面を組み合わせて,上記の課題に対処するハイブリッド手法を設計する。
本手法は,識別的予測タスクによってそれぞれ反発とアトラクションのメカニズムを明確に特定し,ペアビュー間の相互情報を同時に最大化する。
確立された9つのベンチマーク実験により,提案モデルが自己監督と移動の既成結果より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2021-08-19T09:07:41Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
Semantic Contrastive Learning (SCL) と呼ばれる新しい変種を紹介します。
従来のコントラスト学習とディープクラスタリングの両方の特徴を探求する。
コントラスト学習と深層クラスタリングの強みを統一的なアプローチで増幅することができる。
論文 参考訳(メタデータ) (2021-03-03T20:20:48Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
クラスごとの説明性を提供するアルゴリズムを開発した。
実験の広範なバッテリーでは、クラス固有の可視化のための手法の能力を実証する。
論文 参考訳(メタデータ) (2020-12-03T18:48:39Z) - Deep Inverse Feature Learning: A Representation Learning of Error [6.5358895450258325]
本稿では,機械学習における誤りに対する新たな視点を紹介し,表現学習手法として逆特徴学習(IFL)を提案する。
逆特徴学習法は、深層クラスタリング手法に基づいて、誤り表現の定性的形式を特徴として求める。
実験の結果,提案手法は分類,特にクラスタリングにおいて有望な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2020-03-09T17:45:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。