論文の概要: DeCLUTR: Deep Contrastive Learning for Unsupervised Textual
Representations
- arxiv url: http://arxiv.org/abs/2006.03659v4
- Date: Thu, 27 May 2021 14:57:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 02:51:47.377763
- Title: DeCLUTR: Deep Contrastive Learning for Unsupervised Textual
Representations
- Title(参考訳): DeCLUTR:教師なしテキスト表現のための深層コントラスト学習
- Authors: John Giorgi, Osvald Nitski, Bo Wang, Gary Bader
- Abstract要約: 教師なしテキスト表現のためのDeCLUTR: Deep Contrastive Learningを提案する。
本手法は,ユニバーサル文エンコーダにおける教師なしと教師なしの事前学習のパフォーマンスギャップを埋めるものである。
私たちのコードと事前訓練されたモデルは公開されており、新しいドメインに簡単に適応したり、目に見えないテキストを埋め込むのに使えます。
- 参考スコア(独自算出の注目度): 4.36561468436181
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Sentence embeddings are an important component of many natural language
processing (NLP) systems. Like word embeddings, sentence embeddings are
typically learned on large text corpora and then transferred to various
downstream tasks, such as clustering and retrieval. Unlike word embeddings, the
highest performing solutions for learning sentence embeddings require labelled
data, limiting their usefulness to languages and domains where labelled data is
abundant. In this paper, we present DeCLUTR: Deep Contrastive Learning for
Unsupervised Textual Representations. Inspired by recent advances in deep
metric learning (DML), we carefully design a self-supervised objective for
learning universal sentence embeddings that does not require labelled training
data. When used to extend the pretraining of transformer-based language models,
our approach closes the performance gap between unsupervised and supervised
pretraining for universal sentence encoders. Importantly, our experiments
suggest that the quality of the learned embeddings scale with both the number
of trainable parameters and the amount of unlabelled training data. Our code
and pretrained models are publicly available and can be easily adapted to new
domains or used to embed unseen text.
- Abstract(参考訳): 文埋め込みは多くの自然言語処理(NLP)システムにおいて重要なコンポーネントである。
単語の埋め込みと同様に、文の埋め込みは通常、大きなテキストコーパスで学習され、クラスタリングや検索などの様々な下流タスクに転送される。
単語埋め込みとは異なり、文埋め込みを学習するための最もパフォーマンスの高いソリューションはラベル付きデータを必要とし、ラベル付きデータが豊富である言語やドメインにその有用性を制限する。
本稿では,教師なしテキスト表現のためのDeCLUTR: Deep Contrastive Learningを提案する。
近年のディープラーニング(dml)の進歩に触発されて,ラベル付きトレーニングデータを必要としない普遍文埋め込み学習のための自己教師付き目標を慎重に設計した。
変換器に基づく言語モデルの事前学習の拡張に使用すると、ユニバーサル文エンコーダにおける教師なしと教師なしの事前学習のパフォーマンスギャップを埋める。
実験では,学習した組込みの質は,学習可能なパラメータ数とラベルなしのトレーニングデータ量の両方でスケールすることが示唆された。
私たちのコードと事前学習済みモデルは公開されており、新しいドメインに簡単に適応したり、未公開のテキストを埋め込むことができます。
関連論文リスト
- Exploiting the Semantic Knowledge of Pre-trained Text-Encoders for Continual Learning [70.64617500380287]
継続的な学習は、モデルが学習した知識を維持しながら、新しいデータから学習することを可能にする。
画像のラベル情報で利用できるセマンティック知識は、以前に取得したセマンティッククラスの知識と関連する重要なセマンティック情報を提供する。
テキスト埋め込みを用いて意味的類似性を把握し,タスク内およびタスク間のセマンティックガイダンスの統合を提案する。
論文 参考訳(メタデータ) (2024-08-02T07:51:44Z) - Synergizing Unsupervised and Supervised Learning: A Hybrid Approach for Accurate Natural Language Task Modeling [0.0]
本稿では,NLPタスクモデリングの精度を向上させるために,教師なし学習と教師なし学習を相乗化する新しいハイブリッド手法を提案する。
提案手法は,未ラベルコーパスから表現を学習する教師なしモジュールと,これらの表現を活用してタスク固有モデルを強化する教師付きモジュールを統合する。
手法の相乗化により、我々のハイブリッドアプローチはベンチマークデータセット上でSOTAの結果を達成し、よりデータ効率が高くロバストなNLPシステムを実現する。
論文 参考訳(メタデータ) (2024-06-03T08:31:35Z) - A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus [71.77214818319054]
自然言語推論は自然言語理解のプロキシである。
ルーマニア語のNLIコーパスは公開されていない。
58Kの訓練文対からなるルーマニア初のNLIコーパス(RoNLI)を紹介する。
論文 参考訳(メタデータ) (2024-05-20T08:41:15Z) - Extracting Text Representations for Terms and Phrases in Technical
Domains [9.27244202193623]
そこで本研究では,大容量の事前学習組込み行列を再構築する目的で,小文字モデルを用いたテキスト符号化手法を提案する。
このアプローチでトレーニングされたモデルは、技術領域における文エンコーダの品質に適合するだけでなく、5倍小さく、最大10倍高速である。
論文 参考訳(メタデータ) (2023-05-25T08:59:36Z) - Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-following LLM [31.25193238045053]
我々は、より小さな言語モデルの訓練を支援するために、大規模言語モデルの強力な生成力を利用する新しい手法、GenCoを導入する。
本手法では,LLMは2つの重要な方法で,より小さなモデルの自己学習ループにおいて重要な役割を果たす。
予測ラベルに条件付き入力テキストを書き換えることで、高品質なトレーニングペアの開発を支援する。
論文 参考訳(メタデータ) (2023-04-24T07:35:38Z) - M-Tuning: Prompt Tuning with Mitigated Label Bias in Open-Set Scenarios [103.6153593636399]
緩和ラベルバイアス(M-Tuning)を用いた視覚言語プロンプトチューニング手法を提案する。
これはWordNetからのオープンワードを導入し、クローズドセットラベルワードのみからもっと多くのプロンプトテキストを形成する単語の範囲を広げ、シミュレートされたオープンセットシナリオでプロンプトをチューニングする。
提案手法は,様々なスケールのデータセット上で最高の性能を達成し,広範囲にわたるアブレーション研究もその有効性を検証した。
論文 参考訳(メタデータ) (2023-03-09T09:05:47Z) - Robotic Skill Acquisition via Instruction Augmentation with
Vision-Language Models [70.82705830137708]
言語条件制御のためのデータ駆動型インストラクション拡張(DIAL)について紹介する。
我々は,CLIPのセマンティック理解を利用したセミ言語ラベルを用いて,未知の実演データの大規模なデータセットに知識を伝達する。
DIALは、模倣学習ポリシーによって、新しい能力を獲得し、元のデータセットにない60の新しい命令を一般化することができる。
論文 参考訳(メタデータ) (2022-11-21T18:56:00Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。