論文の概要: Anomaly Detection with Domain Adaptation
- arxiv url: http://arxiv.org/abs/2006.03689v1
- Date: Fri, 5 Jun 2020 21:05:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 03:09:35.248554
- Title: Anomaly Detection with Domain Adaptation
- Title(参考訳): ドメイン適応による異常検出
- Authors: Ziyi Yang, Iman Soltani Bozchalooi, Eric Darve
- Abstract要約: この問題を解決するために,不変表現異常検出(IRAD)を提案する。
抽出は、ソース固有のエンコーダやジェネレータと共に訓練されたクロスドメインエンコーダによって達成される。
我々は、桁画像データセット(MNIST、USPS、SVHN)とオブジェクト認識データセット(Office-Home)に基づいて、IRADを広範囲に評価する。
- 参考スコア(独自算出の注目度): 5.457279006229213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of semi-supervised anomaly detection with domain
adaptation. Given a set of normal data from a source domain and a limited
amount of normal examples from a target domain, the goal is to have a
well-performing anomaly detector in the target domain. We propose the Invariant
Representation Anomaly Detection (IRAD) to solve this problem where we first
learn to extract a domain-invariant representation. The extraction is achieved
by an across-domain encoder trained together with source-specific encoders and
generators by adversarial learning. An anomaly detector is then trained using
the learnt representations. We evaluate IRAD extensively on digits images
datasets (MNIST, USPS and SVHN) and object recognition datasets (Office-Home).
Experimental results show that IRAD outperforms baseline models by a wide
margin across different datasets. We derive a theoretical lower bound for the
joint error that explains the performance decay from overtraining and also an
upper bound for the generalization error.
- Abstract(参考訳): 領域適応を用いた半教師付き異常検出の問題点について検討する。
ソースドメインからの正規データの集合と、ターゲットドメインからの正規例の限られた量を考えると、目標は、ターゲットドメインに適切な異常検出器を持つことである。
本稿では、まずドメイン不変表現を抽出することを学ぶために、不変表現異常検出(irad)を提案する。
抽出は、ソース固有のエンコーダやジェネレータと共に訓練されたクロスドメインエンコーダによって行われる。
その後、学習表現を用いて異常検出器を訓練する。
我々は、桁画像データセット(MNIST、USPS、SVHN)とオブジェクト認識データセット(Office-Home)に基づいて、IRADを広範囲に評価する。
実験の結果、IRADは様々なデータセットでベースラインモデルよりも広いマージンで優れていた。
我々は、オーバートレーニングによる性能劣化を説明するジョイントエラーの理論的下界と、一般化誤差の上限を導出する。
関連論文リスト
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralADは、意味的、ほぼ分布的、産業的設定で動作するように設計された異常検出フレームワークである。
本稿では,ノイズ付加やシャッフルなどの簡単な操作を施した自己教師付き異常生成モジュールを提案する。
提案手法を10のデータセットに対して広範囲に評価し,6つの実験結果と,残りの6つの実験結果を得た。
論文 参考訳(メタデータ) (2024-07-17T09:27:41Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - DACAD: Domain Adaptation Contrastive Learning for Anomaly Detection in Multivariate Time Series [25.434379659643707]
時系列異常検出では、ラベル付きデータの不足が正確なモデルの開発に困難をもたらす。
時系列における異常検出のための新しいドメインコントラスト学習モデル(DACAD)を提案する。
本モデルでは,ソース領域に対する教師付きコントラスト損失と,ターゲット領域に対する自己監督型コントラスト型3重項損失を用いる。
論文 参考訳(メタデータ) (2024-04-17T11:20:14Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD)は、ターゲットデータにさらなるトレーニングを加えることなく、さまざまなアプリケーションドメインからさまざまなデータセットの異常を検出するために一般化可能な、単一の検出モデルをトレーニングすることを目的としている。
InCTRLと呼ばれるGADのための文脈内残差学習モデルを学習する新しい手法を提案する。
InCTRLは最高のパフォーマーであり、最先端の競合手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-03-11T08:07:46Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Time-series Anomaly Detection via Contextual Discriminative Contrastive
Learning [0.0]
一級分類法は、異常検出タスクに一般的に使用される。
本稿では,DeepSVDDの損失関数に着想を得た新しい手法を提案する。
我々は,我々のアプローチと,将来有望な自己教師型学習異常検出手法であるNeutral ADによる決定論的コントラスト損失を組み合わせた。
論文 参考訳(メタデータ) (2023-04-16T21:36:19Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain Generalizable (DG) Person Re-identification (ReID)は、トレーニング時に対象のドメインデータにアクセスすることなく、見えないドメインをまたいでテストすることを目的としている。
本稿では,DG ReID のための OThers' Aggregation (META) を用いた Mimicking Embedding という新しい手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T08:06:50Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
半教師付き異常検出は、通常のデータに基づいて訓練されたモデルを用いて、通常のサンプルから異常を検出することを目的としている。
本稿では,自己エンコーダのパラメータを協調的に学習する手法であるDASVDDを提案する。
論文 参考訳(メタデータ) (2021-06-09T21:57:41Z) - Learning Domain-invariant Graph for Adaptive Semi-supervised Domain
Adaptation with Few Labeled Source Samples [65.55521019202557]
ドメイン適応は、ソースドメインからモデルを一般化して、関連するが異なるターゲットドメインのタスクに取り組むことを目的としています。
従来のドメイン適応アルゴリズムは、事前知識として扱われる十分なラベル付きデータがソースドメインで利用できると仮定する。
少数のラベル付きソースサンプルを用いたドメイン適応のためのドメイン不変グラフ学習(DGL)手法を提案する。
論文 参考訳(メタデータ) (2020-08-21T08:13:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。