Multi-Task Temporal Shift Attention Networks for On-Device Contactless
Vitals Measurement
- URL: http://arxiv.org/abs/2006.03790v2
- Date: Sun, 28 Feb 2021 20:50:15 GMT
- Title: Multi-Task Temporal Shift Attention Networks for On-Device Contactless
Vitals Measurement
- Authors: Xin Liu, Josh Fromm, Shwetak Patel, Daniel McDuff
- Abstract summary: We present a video-based and on-device optical cardiopulmonary vital sign measurement approach.
It enables real-time cardiovascular and respiratory measurements on mobile platforms.
We evaluate our system on an Advanced RISC Machine (ARM) CPU and achieve state-of-the-art accuracy while running at over 150 frames per second.
- Score: 9.825675909430611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Telehealth and remote health monitoring have become increasingly important
during the SARS-CoV-2 pandemic and it is widely expected that this will have a
lasting impact on healthcare practices. These tools can help reduce the risk of
exposing patients and medical staff to infection, make healthcare services more
accessible, and allow providers to see more patients. However, objective
measurement of vital signs is challenging without direct contact with a
patient. We present a video-based and on-device optical cardiopulmonary vital
sign measurement approach. It leverages a novel multi-task temporal shift
convolutional attention network (MTTS-CAN) and enables real-time cardiovascular
and respiratory measurements on mobile platforms. We evaluate our system on an
Advanced RISC Machine (ARM) CPU and achieve state-of-the-art accuracy while
running at over 150 frames per second which enables real-time applications.
Systematic experimentation on large benchmark datasets reveals that our
approach leads to substantial (20%-50%) reductions in error and generalizes
well across datasets.
Related papers
- Unlocking Telemetry Potential: Self-Supervised Learning for Continuous Clinical Electrocardiogram Monitoring [0.0]
This paper applies deep learning to a large volume of unlabeled electrocardiogram (ECG) telemetry signals.
We applied self-supervised learning to pretrain a spectrum of deep networks on approximately 147,000 hours of ECG telemetry data.
arXiv Detail & Related papers (2024-06-07T18:00:00Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
Existing monitoring approaches were designed on the premise that medical devices track several health metrics concurrently.
This means that they report all relevant health values within that scope, which can result in excess resource use and the gathering of extraneous data.
We propose Dynamic Activity-Aware Health Monitoring strategy (DActAHM) for striking a balance between optimal monitoring performance and cost efficiency.
arXiv Detail & Related papers (2024-01-19T16:26:35Z) - AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing [2.7503982558916906]
The intensive care unit (ICU) is a specialized hospital space where critically ill patients receive intensive care and monitoring.
Comprehensive monitoring is imperative in assessing patients conditions, in particular acuity, and ultimately the quality of care.
Currently, visual assessments for acuity, including fine details such as facial expressions, posture, and mobility, are sporadically captured, or not captured at all.
arXiv Detail & Related papers (2023-03-11T00:25:55Z) - Remote patient monitoring using artificial intelligence: Current state,
applications, and challenges [13.516357215412024]
This study aims to do a comprehensive review of RPM systems including adopted advanced technologies, AI impact on RPM, challenges and trends in AI-enabled RPM.
The role of AI in RPM ranges from physical activity classification to chronic disease monitoring and vital signs monitoring in emergency settings.
This review results show that AI-enabled RPM architectures have transformed healthcare monitoring applications.
arXiv Detail & Related papers (2023-01-19T06:22:14Z) - PulseImpute: A Novel Benchmark Task for Pulsative Physiological Signal
Imputation [54.839600943189915]
Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions.
Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications.
We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks.
arXiv Detail & Related papers (2022-12-14T21:39:15Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
We have recorded participants performing technology-based assessments in a prospective study to research Parkinson's Disease (PD)
This study provided the largest PD sample size of two-hand synchronous smartwatch measurements.
arXiv Detail & Related papers (2022-05-11T09:12:59Z) - Automated, real-time hospital ICU emergency signaling: A field-level
implementation [1.5399429731150378]
We design a novel central patient monitoring system.
The proposed prototype comprises of inexpensive peripherals and simplistic user interface.
By evaluating continuous patient data, we show that the system is able to detect critical events in real-time reliably and has low false alarm rate.
arXiv Detail & Related papers (2021-11-03T03:32:33Z) - Learning Generalizable Physiological Representations from Large-scale
Wearable Data [12.863826659440026]
We present a novel self-supervised representation learning method using activity and heart rate (HR) signals without semantic labels.
We show that the resulting embeddings can generalize in various downstream tasks through transfer learning with linear classifiers.
Overall, we propose the first multimodal self-supervised method for behavioral and physiological data with implications for large-scale health and lifestyle monitoring.
arXiv Detail & Related papers (2020-11-09T17:56:03Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.