Remote patient monitoring using artificial intelligence: Current state,
applications, and challenges
- URL: http://arxiv.org/abs/2301.10009v1
- Date: Thu, 19 Jan 2023 06:22:14 GMT
- Title: Remote patient monitoring using artificial intelligence: Current state,
applications, and challenges
- Authors: Thanveer Shaik, Xiaohui Tao, Niall Higgins, Lin Li, Raj Gururajan,
Xujuan Zhou, U. Rajendra Acharya
- Abstract summary: This study aims to do a comprehensive review of RPM systems including adopted advanced technologies, AI impact on RPM, challenges and trends in AI-enabled RPM.
The role of AI in RPM ranges from physical activity classification to chronic disease monitoring and vital signs monitoring in emergency settings.
This review results show that AI-enabled RPM architectures have transformed healthcare monitoring applications.
- Score: 13.516357215412024
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The adoption of artificial intelligence (AI) in healthcare is growing
rapidly. Remote patient monitoring (RPM) is one of the common healthcare
applications that assist doctors to monitor patients with chronic or acute
illness at remote locations, elderly people in-home care, and even hospitalized
patients. The reliability of manual patient monitoring systems depends on staff
time management which is dependent on their workload. Conventional patient
monitoring involves invasive approaches which require skin contact to monitor
health status. This study aims to do a comprehensive review of RPM systems
including adopted advanced technologies, AI impact on RPM, challenges and
trends in AI-enabled RPM. This review explores the benefits and challenges of
patient-centric RPM architectures enabled with Internet of Things wearable
devices and sensors using the cloud, fog, edge, and blockchain technologies.
The role of AI in RPM ranges from physical activity classification to chronic
disease monitoring and vital signs monitoring in emergency settings. This
review results show that AI-enabled RPM architectures have transformed
healthcare monitoring applications because of their ability to detect early
deterioration in patients' health, personalize individual patient health
parameter monitoring using federated learning, and learn human behavior
patterns using techniques such as reinforcement learning. This review discusses
the challenges and trends to adopt AI to RPM systems and implementation issues.
The future directions of AI in RPM applications are analyzed based on the
challenges and trends
Related papers
- AI in Remote Patient Monitoring [0.0]
This chapter explores the integration of AI in Remote Patient Monitoring (RPM)
I present a detailed overview of how AI enhances monitoring accuracy, predictive analytics, and personalized treatment plans.
The chapter also discusses the challenges and future directions in this field.
arXiv Detail & Related papers (2024-07-04T15:33:57Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
Existing monitoring approaches were designed on the premise that medical devices track several health metrics concurrently.
This means that they report all relevant health values within that scope, which can result in excess resource use and the gathering of extraneous data.
We propose Dynamic Activity-Aware Health Monitoring strategy (DActAHM) for striking a balance between optimal monitoring performance and cost efficiency.
arXiv Detail & Related papers (2024-01-19T16:26:35Z) - AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing [2.7503982558916906]
The intensive care unit (ICU) is a specialized hospital space where critically ill patients receive intensive care and monitoring.
Comprehensive monitoring is imperative in assessing patients conditions, in particular acuity, and ultimately the quality of care.
Currently, visual assessments for acuity, including fine details such as facial expressions, posture, and mobility, are sporadically captured, or not captured at all.
arXiv Detail & Related papers (2023-03-11T00:25:55Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - AI enabled RPM for Mental Health Facility [8.26802516741755]
This paper discusses an AI-enabled RPM system framework with a non-invasive digital technology RFID using its in-built NCS mechanism to retrieve vital signs and physical actions of patients.
Based on the retrieved time series data, future vital signs of patients for the upcoming 3 hours and classify their physical actions into 10 labelled physical activities.
This framework assists to avoid any unforeseen clinical disasters and take precautionary measures with medical intervention at right time.
arXiv Detail & Related papers (2023-01-20T23:47:16Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Automated, real-time hospital ICU emergency signaling: A field-level
implementation [1.5399429731150378]
We design a novel central patient monitoring system.
The proposed prototype comprises of inexpensive peripherals and simplistic user interface.
By evaluating continuous patient data, we show that the system is able to detect critical events in real-time reliably and has low false alarm rate.
arXiv Detail & Related papers (2021-11-03T03:32:33Z) - An Overview of Human Activity Recognition Using Wearable Sensors:
Healthcare and Artificial Intelligence [4.04762671215916]
Human activity recognition (HAR) has been applied in a variety of domains such as security and surveillance, human-robot interaction, and entertainment.
We present our emerging HAR projects for healthcare: identification of human activities for intensive care unit (ICU) patients and Duchenne muscular dystrophy (DMD) patients.
Our HAR systems include hardware design to collect sensor data from ICU patients and DMD patients and accurate AI models to recognize patients' activities.
arXiv Detail & Related papers (2021-03-29T23:48:51Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.