AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing
- URL: http://arxiv.org/abs/2303.06252v3
- Date: Thu, 21 Nov 2024 21:19:41 GMT
- Title: AI-Enhanced Intensive Care Unit: Revolutionizing Patient Care with Pervasive Sensing
- Authors: Subhash Nerella, Ziyuan Guan, Scott Siegel, Jiaqing Zhang, Ruilin Zhu, Kia Khezeli, Azra Bihorac, Parisa Rashidi,
- Abstract summary: The intensive care unit (ICU) is a specialized hospital space where critically ill patients receive intensive care and monitoring.
Comprehensive monitoring is imperative in assessing patients conditions, in particular acuity, and ultimately the quality of care.
Currently, visual assessments for acuity, including fine details such as facial expressions, posture, and mobility, are sporadically captured, or not captured at all.
- Score: 2.7503982558916906
- License:
- Abstract: The intensive care unit (ICU) is a specialized hospital space where critically ill patients receive intensive care and monitoring. Comprehensive monitoring is imperative in assessing patients conditions, in particular acuity, and ultimately the quality of care. However, the extent of patient monitoring in the ICU is limited due to time constraints and the workload on healthcare providers. Currently, visual assessments for acuity, including fine details such as facial expressions, posture, and mobility, are sporadically captured, or not captured at all. These manual observations are subjective to the individual, prone to documentation errors, and overburden care providers with the additional workload. Artificial Intelligence (AI) enabled systems has the potential to augment the patient visual monitoring and assessment due to their exceptional learning capabilities. Such systems require robust annotated data to train. To this end, we have developed pervasive sensing and data processing system which collects data from multiple modalities depth images, color RGB images, accelerometry, electromyography, sound pressure, and light levels in ICU for developing intelligent monitoring systems for continuous and granular acuity, delirium risk, pain, and mobility assessment. This paper presents the Intelligent Intensive Care Unit (I2CU) system architecture we developed for real-time patient monitoring and visual assessment.
Related papers
- CO2Wounds-V2: Extended Chronic Wounds Dataset From Leprosy Patients [57.31670527557228]
This paper introduces the CO2Wounds-V2 dataset, an extended collection of RGB wound images from leprosy patients.
It aims to enhance the development and testing of image-processing algorithms in the medical field.
arXiv Detail & Related papers (2024-08-20T13:21:57Z) - Leveraging Computer Vision in the Intensive Care Unit (ICU) for Examining Visitation and Mobility [12.347067736902094]
We leverage a state-of-the-art noninvasive computer vision system based on depth imaging to characterize ICU visitations and patients' mobility.
We found an association between deteriorating patient acuity and the incidence of delirium with increased visitations.
Our findings highlight the feasibility and potential of using noninvasive autonomous systems to monitor ICU patients.
arXiv Detail & Related papers (2024-03-10T21:43:47Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - Detecting Visual Cues in the Intensive Care Unit and Association with Patient Clinical Status [0.9867627975175174]
Existing patient assessments in the ICU are mostly sporadic and administered manually.
We developed a new "masked loss computation" technique that addresses the data imbalance problem.
We performed AU inference on 634,054 frames to evaluate the association between facial AUs and clinically important patient conditions.
arXiv Detail & Related papers (2023-11-01T15:07:03Z) - Remote patient monitoring using artificial intelligence: Current state,
applications, and challenges [13.516357215412024]
This study aims to do a comprehensive review of RPM systems including adopted advanced technologies, AI impact on RPM, challenges and trends in AI-enabled RPM.
The role of AI in RPM ranges from physical activity classification to chronic disease monitoring and vital signs monitoring in emergency settings.
This review results show that AI-enabled RPM architectures have transformed healthcare monitoring applications.
arXiv Detail & Related papers (2023-01-19T06:22:14Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
We propose a new method that uses medical text of Electronic Health Records for prediction.
We represent discharge summaries of patients with multiview graphs enhanced by an external knowledge graph.
Experimental results prove the effectiveness of our method, yielding state-of-the-art performance.
arXiv Detail & Related papers (2021-12-19T01:45:57Z) - Automated, real-time hospital ICU emergency signaling: A field-level
implementation [1.5399429731150378]
We design a novel central patient monitoring system.
The proposed prototype comprises of inexpensive peripherals and simplistic user interface.
By evaluating continuous patient data, we show that the system is able to detect critical events in real-time reliably and has low false alarm rate.
arXiv Detail & Related papers (2021-11-03T03:32:33Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Multi-Task Temporal Shift Attention Networks for On-Device Contactless
Vitals Measurement [9.825675909430611]
We present a video-based and on-device optical cardiopulmonary vital sign measurement approach.
It enables real-time cardiovascular and respiratory measurements on mobile platforms.
We evaluate our system on an Advanced RISC Machine (ARM) CPU and achieve state-of-the-art accuracy while running at over 150 frames per second.
arXiv Detail & Related papers (2020-06-06T06:31:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.