論文の概要: Leveraging the Feature Distribution in Transfer-based Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2006.03806v3
- Date: Tue, 26 Jan 2021 10:03:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 20:55:34.809615
- Title: Leveraging the Feature Distribution in Transfer-based Few-Shot Learning
- Title(参考訳): 転送型Few-Shot学習における特徴分布の活用
- Authors: Yuqing Hu, Vincent Gripon, St\'ephane Pateux
- Abstract要約: ラベル付きサンプルの少ない使用によって生じる不確実性のため、ほとんどショット分類が難しい問題である。
本稿では,(1)特徴ベクトルをガウス分布に近づけるように前処理し,2)最適輸送インスパイアされたアルゴリズムを用いて,この前処理を活用する。
提案手法は,様々なデータセット,バックボーンアーキテクチャ,少数ショット設定を用いて,最先端の精度を実現することができる。
- 参考スコア(独自算出の注目度): 2.922007656878633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot classification is a challenging problem due to the uncertainty
caused by using few labelled samples. In the past few years, many methods have
been proposed to solve few-shot classification, among which transfer-based
methods have proved to achieve the best performance. Following this vein, in
this paper we propose a novel transfer-based method that builds on two
successive steps: 1) preprocessing the feature vectors so that they become
closer to Gaussian-like distributions, and 2) leveraging this preprocessing
using an optimal-transport inspired algorithm (in the case of transductive
settings). Using standardized vision benchmarks, we prove the ability of the
proposed methodology to achieve state-of-the-art accuracy with various
datasets, backbone architectures and few-shot settings.
- Abstract(参考訳): ラベル付きサンプルの少ない使用によって生じる不確実性のため、ほとんどショット分類が難しい問題である。
ここ数年, 転送ベース手法が最高の性能を達成し, 少数ショット分類の解法が提案されてきた。
そこで,本稿では,次の2つのステップを踏襲するトランスファーベース手法を提案する。
1)特徴ベクトルがガウス的分布に近づくように前処理し、
2) トランスダクティブ設定の場合, 最適トランスポートインスピレーションアルゴリズムを用いて, この前処理を利用する。
標準化されたビジョンベンチマークを用いて、様々なデータセット、バックボーンアーキテクチャ、少数ショット設定で最先端の精度を達成するための提案手法の能力を実証する。
関連論文リスト
- Dual Adaptive Representation Alignment for Cross-domain Few-shot
Learning [58.837146720228226]
ベース知識から学習することで、限られたサポートサンプルを持つ新規なクエリを認識することを目的としている。
この設定の最近の進歩は、ベース知識と新しいクエリサンプルが同じドメインに分散されていることを前提としている。
本稿では,ターゲットドメインで利用可能なサンプルが極めて少ないドメイン間数ショット学習の問題に対処することを提案する。
論文 参考訳(メタデータ) (2023-06-18T09:52:16Z) - Exploring Effective Knowledge Transfer for Few-shot Object Detection [54.45009859654753]
ローショットのレジームで優れている方法は、ハイショットのレジームで苦労する傾向があり、その逆もある。
ローショット方式では、内級変動の欠如が主な課題である。
ハイショットの体制では、分散が実数に近づくにつれて、パフォーマンスに対する主な障害は、学習された分布と真の分布のミスアライメントから生じる。
論文 参考訳(メタデータ) (2022-10-05T04:53:58Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
適応次元の削減によりさらに改善された変分ベイズ推定に基づく新しいクラスタリング法を提案する。
提案手法は,Few-Shotベンチマークにおける現実的非バランスなトランスダクティブ設定の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-09-18T10:29:02Z) - "Diversity and Uncertainty in Moderation" are the Key to Data Selection
for Multilingual Few-shot Transfer [13.268758633770595]
本稿では,アノテーションのためのデータ選択手法について検討する。
提案手法は,$n$-gram言語モデルを用いたデータエントロピー,予測エントロピー,勾配埋め込みなどの複数の尺度に依存する。
実験により、勾配と損失埋め込みに基づく戦略は、ランダムなデータ選択ベースラインを一貫して上回ることが示された。
論文 参考訳(メタデータ) (2022-06-30T04:22:27Z) - Towards Better Understanding Attribution Methods [77.1487219861185]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
また,いくつかの属性法の性能を著しく向上する処理後平滑化ステップを提案する。
論文 参考訳(メタデータ) (2022-05-20T20:50:17Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Squeezing Backbone Feature Distributions to the Max for Efficient
Few-Shot Learning [3.1153758106426603]
ラベル付きサンプルの少ない使用によって生じる不確実性のため、ほとんどショット分類が難しい問題である。
本稿では,特徴ベクトルをガウス分布に近づけるように処理するトランスファーベース手法を提案する。
また,学習中に未学習のサンプルが利用可能となる多段階的数ショット学習では,達成された性能をさらに向上させる最適なトランスポートインスピレーションアルゴリズムも導入する。
論文 参考訳(メタデータ) (2021-10-18T16:29:17Z) - Coarse to Fine: Domain Adaptive Crowd Counting via Adversarial Scoring
Network [58.05473757538834]
本稿では,ドメイン間のギャップを粗い粒度から細かな粒度に埋める新しい逆スコアリングネットワーク (ASNet) を提案する。
3組のマイグレーション実験により,提案手法が最先端のカウント性能を実現することを示す。
論文 参考訳(メタデータ) (2021-07-27T14:47:24Z) - Transductive Information Maximization For Few-Shot Learning [41.461586994394565]
数ショット学習のためのTIM(Transductive Infomation Maximization)を提案する。
提案手法は,与えられた数発のタスクに対して,クエリ特徴とラベル予測との相互情報を最大化する。
相互情報損失に対する新たな交互方向解法を提案する。
論文 参考訳(メタデータ) (2020-08-25T22:38:41Z) - Generalized Zero and Few-Shot Transfer for Facial Forgery Detection [3.8073142980733]
フォージェリ検出の文脈でゼロおよび少数ショット転送の問題に対処する新しいトランスファー学習手法を提案する。
従来の分類や最先端のドメイン適応/ファウショット学習手法と比較して,この学習戦略は驚くほど効果的である。
論文 参考訳(メタデータ) (2020-06-21T18:10:52Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。