論文の概要: Towards Better Understanding Attribution Methods
- arxiv url: http://arxiv.org/abs/2205.10435v1
- Date: Fri, 20 May 2022 20:50:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-24 15:58:23.851101
- Title: Towards Better Understanding Attribution Methods
- Title(参考訳): 帰属方法の理解を深める
- Authors: Sukrut Rao, Moritz B\"ohle, Bernt Schiele
- Abstract要約: モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
また,いくつかの属性法の性能を著しく向上する処理後平滑化ステップを提案する。
- 参考スコア(独自算出の注目度): 77.1487219861185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are very successful on many vision tasks, but hard to
interpret due to their black box nature. To overcome this, various post-hoc
attribution methods have been proposed to identify image regions most
influential to the models' decisions. Evaluating such methods is challenging
since no ground truth attributions exist. We thus propose three novel
evaluation schemes to more reliably measure the faithfulness of those methods,
to make comparisons between them more fair, and to make visual inspection more
systematic. To address faithfulness, we propose a novel evaluation setting
(DiFull) in which we carefully control which parts of the input can influence
the output in order to distinguish possible from impossible attributions. To
address fairness, we note that different methods are applied at different
layers, which skews any comparison, and so evaluate all methods on the same
layers (ML-Att) and discuss how this impacts their performance on quantitative
metrics. For more systematic visualizations, we propose a scheme (AggAtt) to
qualitatively evaluate the methods on complete datasets. We use these
evaluation schemes to study strengths and shortcomings of some widely used
attribution methods. Finally, we propose a post-processing smoothing step that
significantly improves the performance of some attribution methods, and discuss
its applicability.
- Abstract(参考訳): ディープニューラルネットワークは多くの視覚タスクで非常に成功したが、ブラックボックスの性質のため解釈が難しい。
これを解決するために、モデル決定に最も影響を及ぼす画像領域を特定するために、様々なポストホック属性法が提案されている。
このような手法の評価は、基礎的な真理の帰属は存在しないため難しい。
そこで本研究では,これらの手法の忠実性をより確実に測定し,比較を公平にし,視覚的検査をより体系的に行うための3つの評価手法を提案する。
信頼度に対処するために,入力のどの部分が出力に影響を与えるかを慎重に制御して,不可能な属性と区別できる新しい評価設定(DiFull)を提案する。
公平性に対処するために、異なるメソッドが異なるレイヤに適用されることに留意し、同じレイヤ上のすべてのメソッド(ML-Att)を評価し、これが定量的メトリクスのパフォーマンスに与える影響について議論する。
より体系的な可視化を行うため,完全データセット上の手法を質的に評価する手法(AggAttt)を提案する。
これらの評価手法を用いて, 広く用いられている帰属法の強みと欠点について検討した。
最後に,いくつかの帰属法の性能を大幅に向上させる処理後の平滑化ステップを提案し,その適用可能性について考察する。
関連論文リスト
- Toward Understanding the Disagreement Problem in Neural Network Feature Attribution [0.8057006406834466]
ニューラルネットワークは 複雑なパターンと関係を 生のデータから識別する
これらのブラックボックスモデルの内部動作を理解することは、依然として難しいが、高い意思決定には不可欠である。
我々の研究は、説明の基本的な、分布的な振る舞いを調査することによって、この混乱に対処する。
論文 参考訳(メタデータ) (2024-04-17T12:45:59Z) - A Large-Scale Empirical Study on Improving the Fairness of Image Classification Models [22.522156479335706]
本稿では,現在ある最先端の公正性向上技術の性能を比較するための,最初の大規模実証的研究を行う。
その結果,各手法の性能は,データセットや属性によって大きく異なることがわかった。
異なる公平度評価指標は、その異なる焦点のために、明らかに異なる評価結果をもたらす。
論文 参考訳(メタデータ) (2024-01-08T06:53:33Z) - Towards Evaluating Transfer-based Attacks Systematically, Practically,
and Fairly [79.07074710460012]
ディープニューラルネットワーク(DNN)の敵対的脆弱性に大きな注目を集めている。
ブラックボックスDNNモデルを騙すための転送ベース手法が増えている。
30以上のメソッドを実装した転送ベースアタックベンチマーク(TA-Bench)を確立する。
論文 参考訳(メタデータ) (2023-11-02T15:35:58Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
視覚的対物的説明法(VCE)の最新手法は、深い生成モデルの力を利用して、印象的な画質の高次元画像の新しい例を合成する。
評価手順が大きく異なり,個々の実例の視覚検査や小規模なユーザスタディなど,これらのVCE手法の性能を比較することは,現時点では困難である。
本稿では,VCE手法の体系的,定量的評価のためのフレームワークと,使用する指標の最小セットを提案する。
論文 参考訳(メタデータ) (2023-08-11T12:22:37Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - Time to Focus: A Comprehensive Benchmark Using Time Series Attribution
Methods [4.9449660544238085]
本論文は時系列解析といくつかの最先端属性手法のベンチマークに焦点をあてる。
本実験では, 勾配および摂動に基づく帰属法について検討した。
その結果,最も適した帰属法を選択することは,所望のユースケースと強く相関していることが示唆された。
論文 参考訳(メタデータ) (2022-02-08T10:06:13Z) - FewNLU: Benchmarking State-of-the-Art Methods for Few-Shot Natural
Language Understanding [89.92513889132825]
本稿では,従来の評価手順を,テスト性能,開発-テスト相関,安定性の3つの重要な側面で改善する評価フレームワークを提案する。
評価フレームワークを実装したツールキットFewNLUと、最先端のメソッドをオープンソースとして公開しています。
論文 参考訳(メタデータ) (2021-09-27T00:57:30Z) - Revisiting The Evaluation of Class Activation Mapping for
Explainability: A Novel Metric and Experimental Analysis [54.94682858474711]
クラスアクティベーションマッピング(cam)アプローチは、アクティベーションマップの平均を重み付けすることで、効果的な可視化を提供する。
説明マップを定量化するための新しいメトリクスセットを提案し、より効果的な方法を示し、アプローチ間の比較を簡素化します。
論文 参考訳(メタデータ) (2021-04-20T21:34:24Z) - On the Ambiguity of Rank-Based Evaluation of Entity Alignment or Link
Prediction Methods [27.27230441498167]
本稿では,知識グラフから情報を得る方法として,リンク予測とエンティティアライメント(Entity Alignment)の2つのファミリについて,より詳しく検討する。
特に、既存のスコアはすべて、異なるデータセット間で結果を比較するのにほとんど役に立たないことを実証する。
これは結果の解釈において様々な問題を引き起こしており、誤解を招く結論を裏付ける可能性がある。
論文 参考訳(メタデータ) (2020-02-17T12:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。