論文の概要: Pre-training Polish Transformer-based Language Models at Scale
- arxiv url: http://arxiv.org/abs/2006.04229v2
- Date: Tue, 9 Jun 2020 12:58:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 08:03:52.078543
- Title: Pre-training Polish Transformer-based Language Models at Scale
- Title(参考訳): ポーランド変圧器を用いた大規模言語モデルの事前学習
- Authors: S{\l}awomir Dadas, Micha{\l} Pere{\l}kiewicz, Rafa{\l} Po\'swiata
- Abstract要約: 本稿では,人気のあるBERTアーキテクチャに基づくポーランド語のための2つの言語モデルを提案する。
本稿では,データを収集し,コーパスを作成し,モデルを事前学習するための方法論について述べる。
次に、ポーランド語の13の課題について、我々のモデルを評価し、そのうち11つの改善点を実証する。
- 参考スコア(独自算出の注目度): 1.0312968200748118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based language models are now widely used in Natural Language
Processing (NLP). This statement is especially true for English language, in
which many pre-trained models utilizing transformer-based architecture have
been published in recent years. This has driven forward the state of the art
for a variety of standard NLP tasks such as classification, regression, and
sequence labeling, as well as text-to-text tasks, such as machine translation,
question answering, or summarization. The situation have been different for
low-resource languages, such as Polish, however. Although some
transformer-based language models for Polish are available, none of them have
come close to the scale, in terms of corpus size and the number of parameters,
of the largest English-language models. In this study, we present two language
models for Polish based on the popular BERT architecture. The larger model was
trained on a dataset consisting of over 1 billion polish sentences, or 135GB of
raw text. We describe our methodology for collecting the data, preparing the
corpus, and pre-training the model. We then evaluate our models on thirteen
Polish linguistic tasks, and demonstrate improvements over previous approaches
in eleven of them.
- Abstract(参考訳): トランスフォーマーベースの言語モデルは、現在自然言語処理(NLP)で広く使われている。
この主張は、トランスフォーマーベースのアーキテクチャを利用した多くの事前学習されたモデルが近年出版されている英語に特に当てはまる。
これにより、分類、回帰、シーケンスラベリングなどの標準NLPタスクや、機械翻訳、質問応答、要約といったテキストからテキストへのタスクなど、さまざまな標準NLPタスクの最先端技術が推進された。
しかし、ポーランド語のような低リソース言語では状況が異なっていた。
ポーランド語のためのトランスフォーマーベースの言語モデルもいくつか用意されているが、コーパスのサイズやパラメータの数など、最大の英語モデルの規模にはほど遠いものはない。
本研究では,人気のあるBERTアーキテクチャに基づくポーランド語の2つの言語モデルを提案する。
より大きなモデルは、10億以上のポーランド語文と135gbの原文からなるデータセットでトレーニングされた。
本稿では,データ収集,コーパス作成,モデルの事前学習のための方法論について述べる。
その後,13のポーランド語課題に関するモデルを評価し,11の言語課題の先行手法に対する改善を実証した。
関連論文リスト
- Benchmarking Pre-trained Large Language Models' Potential Across Urdu NLP tasks [0.9786690381850356]
多言語データで事前訓練されたLarge Language Models (LLMs)は、自然言語処理の研究に革命をもたらした。
本研究では,15のUrduデータセットを用いて,14のタスクにまたがる顕著なLLMの詳細な検討を行った。
実験の結果、SOTAモデルはゼロショット学習を伴う全てのUrdu NLPタスクにおいて、エンコーダ-デコーダ事前訓練された言語モデルを上回ることがわかった。
論文 参考訳(メタデータ) (2024-05-24T11:30:37Z) - Comparison of Pre-trained Language Models for Turkish Address Parsing [0.0]
トルコの地図データに着目し,多言語とトルコを基盤とするBERT, DistilBERT, ELECTRA, RoBERTaを徹底的に評価する。
また,一層ファインチューニングの標準的なアプローチに加えて,細調整BERTのためのMultiLayer Perceptron (MLP)を提案する。
論文 参考訳(メタデータ) (2023-06-24T12:09:43Z) - Evaluation of Transfer Learning for Polish with a Text-to-Text Model [54.81823151748415]
ポーランド語におけるテキスト・テキスト・モデルの質を評価するための新しいベンチマークを導入する。
KLEJベンチマークはテキスト・トゥ・テキスト、en-pl翻訳、要約、質問応答に適応している。
本稿では,ポーランド語のための汎用テキスト・テキスト・ツー・テキスト・モデルであるplT5について述べる。
論文 参考訳(メタデータ) (2022-05-18T09:17:14Z) - Recent Advances in Natural Language Processing via Large Pre-Trained
Language Models: A Survey [67.82942975834924]
BERTのような大規模で事前訓練された言語モデルは、自然言語処理(NLP)の分野を大きく変えた。
本稿では,これらの大規模言語モデルを用いたNLPタスクの事前学習,微調整,プロンプト,テキスト生成といった手法を用いた最近の研究について紹介する。
論文 参考訳(メタデータ) (2021-11-01T20:08:05Z) - Language Models are Few-shot Multilingual Learners [66.11011385895195]
我々は、非英語言語における多言語分類を行う際に、GPTモデルとT5モデルの多言語的スキルを評価する。
文脈としての英語の例を見ると、事前学習された言語モデルは、英語のテストサンプルだけでなく、英語以外のサンプルも予測できることが示されている。
論文 参考訳(メタデータ) (2021-09-16T03:08:22Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z) - The birth of Romanian BERT [1.377045689881944]
本稿では,ルーマニア語トランスフォーマーをベースとした最初の言語モデルであるルーマニア語BERTについて紹介する。
本稿では,コーパスの構成とクリーニング,モデルトレーニングプロセス,およびルーマニアの様々なデータセット上でのモデルの広範囲な評価について論じる。
論文 参考訳(メタデータ) (2020-09-18T09:30:48Z) - ParsBERT: Transformer-based Model for Persian Language Understanding [0.7646713951724012]
本稿ではペルシャ語用単言語BERT(ParsBERT)を提案する。
他のアーキテクチャや多言語モデルと比較すると、最先端のパフォーマンスを示している。
ParsBERTは、既存のデータセットや合成データセットを含む、すべてのデータセットでより高いスコアを取得する。
論文 参考訳(メタデータ) (2020-05-26T05:05:32Z) - Testing pre-trained Transformer models for Lithuanian news clustering [0.0]
英語以外の言語は、英語の事前訓練されたモデルでそのような新しい機会を活用できなかった。
我々は、リトアニア語ニュースクラスタリングのタスクの符号化として、事前訓練された多言語BERT、XLM-R、および古い学習テキスト表現法を比較した。
この結果から, 単語ベクトルを超えるように微調整できるが, 特別な訓練を施した doc2vec 埋め込みよりもはるかに低いスコアが得られた。
論文 参考訳(メタデータ) (2020-04-03T14:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。