論文の概要: Economic and Business Dimensions Cloud Computing and Electricity: Beyond
the Utility Model
- arxiv url: http://arxiv.org/abs/2006.04244v1
- Date: Sun, 7 Jun 2020 19:40:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 09:07:11.706792
- Title: Economic and Business Dimensions Cloud Computing and Electricity: Beyond
the Utility Model
- Title(参考訳): クラウドコンピューティングと電気の経済とビジネスの次元 - ユーティリティモデルを超えて
- Authors: Erik Brynjolfsson and Paul Hofmann and John Jordan
- Abstract要約: ユーティリティモデルへの過度に単純化された依存は、クラウドコンピューティングの本当の機会と課題に盲目するリスクがあります。
この記事はもともと『アトランティック』に掲載されていた。
- 参考スコア(独自算出の注目度): 1.6204795984450167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An overly simplistic reliance on the utility model risks blinding us to the
real opportunities and challenges of cloud computing.
- Abstract(参考訳): ユーティリティモデルへの過度に単純化された依存は、クラウドコンピューティングの本当の機会と課題に盲目するリスクがあります。
関連論文リスト
- Managing Bandwidth: The Key to Cloud-Assisted Autonomous Driving [73.55745551827229]
自動運転車のようなリアルタイム制御システムにクラウドを頼らなければならない、と私たちは主張する。
時間に敏感な計算と遅延クリティカルな計算の一部をクラウドにオフロードする機会を特定します。
論文 参考訳(メタデータ) (2024-10-21T17:32:36Z) - AI-Driven Innovations in Modern Cloud Computing [2.3931689873603594]
本稿では,AIとクラウドコンピューティングがアプリケーションモダナイズのためのトランスフォーメーション機能を実現するためにどのように相互作用するかを考察する。
AIとクラウドの両技術の組み合わせによって、テクノロジプロバイダはインテリジェントなリソース管理、予測分析、自動デプロイメントとスケーリングを活用できるようになった。
論文 参考訳(メタデータ) (2024-10-21T12:45:10Z) - The intelligent prediction and assessment of financial information risk in the cloud computing model [8.381780312169049]
本報告では,クラウドコンピューティングと金融情報処理の共通点について考察する。
セキュリティとプライバシの懸念に対処しながら、データ処理の効率性と正確性を向上させるインテリジェントなソリューションの必要性について論じる。
金融業界におけるクラウドコンピューティングに関連する集中リスクを軽減するための政策勧告を提案する。
論文 参考訳(メタデータ) (2024-04-14T18:42:20Z) - Generative Probabilistic Time Series Forecasting and Applications in
Grid Operations [47.19756484695248]
生成確率予測は、過去の時系列観測で与えられた条件付き確率分布に基づいて、将来の時系列サンプルを生成する。
本稿では、独立かつ同一に分散したイノベーションシーケンスを抽出する、弱いイノベーションオートエンコーダアーキテクチャと学習アルゴリズムを提案する。
弱いイノベーションシーケンスはベイズ的であり、弱イノベーションオートエンコーダが生成確率予測のための標準アーキテクチャとなることを示す。
論文 参考訳(メタデータ) (2024-02-21T15:23:21Z) - Computing in the Era of Large Generative Models: From Cloud-Native to
AI-Native [46.7766555589807]
クラウドネイティブ技術と高度な機械学習推論の両方のパワーを利用するAIネイティブコンピューティングパラダイムについて説明する。
これらの共同作業は、コスト・オブ・グッド・ソード(COGS)を最適化し、資源のアクセシビリティを向上させることを目的としている。
論文 参考訳(メタデータ) (2024-01-17T20:34:11Z) - Integrating Homomorphic Encryption and Trusted Execution Technology for
Autonomous and Confidential Model Refining in Cloud [4.21388107490327]
同型暗号化と信頼性の高い実行環境技術は、自律的な計算の機密性を保護することができる。
モデル精錬方式の設計にこれらの2つの手法を統合することを提案する。
論文 参考訳(メタデータ) (2023-08-02T06:31:41Z) - How Can We Train Deep Learning Models Across Clouds and Continents? An Experimental Study [57.97785297481162]
代表的なCV, NLP, ASRモデルに対して, 異なるゾーン, 大陸, 雲におけるトレーニングの費用とスループットについて検討した。
スポット価格を活用することで、複数の安価なインスタンスでモデルをトレーニングし、より集中的かつ強力なハードウェアと、競争力のある価格でオンデマンドのクラウド製品の両方を台無しにする、新たなコスト効率の方法が実現されることを示す。
論文 参考訳(メタデータ) (2023-06-05T18:17:37Z) - Towards Confidential Computing: A Secure Cloud Architecture for Big Data
Analytics and AI [0.0]
クラウドコンピューティングは、ビッグデータ分析と人工知能のための実行可能なソリューションになっている。
バイオメディカルリサーチのような特定の分野におけるデータセキュリティは、クラウドに移行する際の大きな懸念事項である。
論文 参考訳(メタデータ) (2023-05-28T16:08:44Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
クラウドとエッジ両方のAIの体系的なレビューを行います。
私たちはクラウドとエッジモデリングの協調学習メカニズムを最初にセットアップしました。
我々は現在進行中の最先端AIトピックの可能性と実践経験について議論する。
論文 参考訳(メタデータ) (2021-11-11T05:58:23Z) - Exploiting the Solar Energy Surplus for Edge Computing [2.468408769917523]
クラウドサービスをプライベート、分散、ソーラーパワーのコンピューティング施設に移行する機会コストについて検討する。
我々は、コンピューティングリソースをクラウドプールにリースする潜在的収益と、余剰エネルギーをグリッドに販売することで得られる収益とを比較した。
結果は、このモデルが経済的に実現可能であり、技術的に実現可能であることを示している。
論文 参考訳(メタデータ) (2020-06-10T07:52:28Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。