論文の概要: Towards Confidential Computing: A Secure Cloud Architecture for Big Data
Analytics and AI
- arxiv url: http://arxiv.org/abs/2305.17761v1
- Date: Sun, 28 May 2023 16:08:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 16:45:28.104693
- Title: Towards Confidential Computing: A Secure Cloud Architecture for Big Data
Analytics and AI
- Title(参考訳): 機密コンピューティングに向けて - ビッグデータ分析とaiのためのセキュアなクラウドアーキテクチャ
- Authors: Naweiluo Zhou, Florent Dufour, Vinzent Bode, Peter Zinterhof, Nicolay
J Hammer, Dieter Kranzlm\"uller
- Abstract要約: クラウドコンピューティングは、ビッグデータ分析と人工知能のための実行可能なソリューションになっている。
バイオメディカルリサーチのような特定の分野におけるデータセキュリティは、クラウドに移行する際の大きな懸念事項である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cloud computing provisions computer resources at a cost-effective way based
on demand. Therefore it has become a viable solution for big data analytics and
artificial intelligence which have been widely adopted in various domain
science. Data security in certain fields such as biomedical research remains a
major concern when moving their workflows to cloud, because cloud environments
are generally outsourced which are more exposed to risks. We present a secure
cloud architecture and describes how it enables workflow packaging and
scheduling while keeping its data, logic and computation secure in transit, in
use and at rest.
- Abstract(参考訳): クラウドコンピューティングは、需要に基づいてコンピュータリソースをコスト効率よく供給する。
そのため、さまざまな領域科学で広く採用されているビッグデータ分析や人工知能の有効なソリューションとなっている。
バイオメディカルリサーチのような特定の分野におけるデータセキュリティは、ワークフローをクラウドに移行する際の大きな関心事である。
セキュアなクラウドアーキテクチャを提示し、データ、ロジック、計算をトランジット、使用時、および停止時に安全に保ちながら、ワークフローのパッケージングとスケジューリングを可能にする方法について説明する。
関連論文リスト
- Artificial Intelligence enhanced Security Problems in Real-Time Scenario using Blowfish Algorithm [0.0]
クラウド(クラウド)とは、インターネットのような大規模なリアルタイム通信ネットワークによって実現された相互接続型コンピューティングリソースの集合体である。
クラウドコンピューティングの指数的拡大により、クラウドサービスの急速な拡張が非常に目覚ましいものになった。
クラウドコンピューティングに関連するセキュリティモデルには、機密性、信頼性、アクセシビリティ、データの完全性、リカバリなどがある。
論文 参考訳(メタデータ) (2024-04-14T15:38:34Z) - Scaling Data Science Solutions with Semantics and Machine Learning:
Bosch Case [8.445414390004636]
SemCloudはセマンティックスに強化されたクラウドシステムで、セマンティック技術と機械学習を備えている。
このシステムは、何百万ものデータ、何千もの繰り返し実行、ドメインユーザによる産業ユースケースで評価され、有望な結果を示している。
論文 参考訳(メタデータ) (2023-08-02T11:58:30Z) - Scalable, Distributed AI Frameworks: Leveraging Cloud Computing for
Enhanced Deep Learning Performance and Efficiency [0.0]
近年、人工知能(AI)とクラウドコンピューティングの統合は、AIアプリケーションの計算要求の増加に対処するための有望な道として現れている。
本稿では,クラウドコンピューティングを活用したスケーラブルな分散AIフレームワークの総合的研究を行い,ディープラーニングの性能向上と効率化について述べる。
論文 参考訳(メタデータ) (2023-04-26T15:38:00Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。
私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-10T17:04:04Z) - Privacy-Preserving Cloud Computing: Ecosystem, Life Cycle, Layered
Architecture and Future Roadmap [0.0]
プライバシ保護型クラウドコンピューティングに関する調査論文は、関連する分野における今後の研究の道を開く上で有効である。
本稿では,階層型アーキテクチャとライフサイクル,プライバシ保護クラウドシステムのためのエコシステムを確立することで,既存のトレンドを識別する上で有効である。
論文 参考訳(メタデータ) (2022-04-23T18:47:26Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
クラウドとエッジ両方のAIの体系的なレビューを行います。
私たちはクラウドとエッジモデリングの協調学習メカニズムを最初にセットアップしました。
我々は現在進行中の最先端AIトピックの可能性と実践経験について議論する。
論文 参考訳(メタデータ) (2021-11-11T05:58:23Z) - Auto-Split: A General Framework of Collaborative Edge-Cloud AI [49.750972428032355]
本稿では,Huawei Cloudのエッジクラウド共同プロトタイプであるAuto-Splitの技法と技術実践について述べる。
私たちの知る限りでは、Deep Neural Network(DNN)分割機能を提供する既存の産業製品はありません。
論文 参考訳(メタデータ) (2021-08-30T08:03:29Z) - Wide-Area Data Analytics [4.080171822768553]
私たちはますます、さまざまな種類のデータが多くの場所に分散している、データ駆動の世界に住んでいます。
コンピューティングコミュニティコンソーシアム(CCC)は、2019年10月に、広域データ分析に焦点を当てた1.5日間のワークショップを開催した。
本報告では,ワークショップで議論された課題と結論について要約する。
論文 参考訳(メタデータ) (2020-06-17T22:44:33Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2020-06-17T18:14:30Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。