Constrained Bayesian Optimization under Bivariate Gaussian Process with Application to Cure Process Optimization
- URL: http://arxiv.org/abs/2506.00174v1
- Date: Fri, 30 May 2025 19:24:54 GMT
- Title: Constrained Bayesian Optimization under Bivariate Gaussian Process with Application to Cure Process Optimization
- Authors: Yezhuo Li, Qiong Zhang, Madhura Limaye, Gang Li,
- Abstract summary: We develop constrained Bayesian Optimization based on independence Gaussian processes assumption between objective and constraint functions.<n>We show case the performance of the proposed approach with an application to cure process optimization in Manufacturing.
- Score: 14.891161644312666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian Optimization, leveraging Gaussian process models, has proven to be a powerful tool for minimizing expensive-to-evaluate objective functions by efficiently exploring the search space. Extensions such as constrained Bayesian Optimization have further enhanced Bayesian Optimization's utility in practical scenarios by focusing the search within feasible regions defined by a black-box constraint function. However, constrained Bayesian Optimization in is developed based on the independence Gaussian processes assumption between objective and constraint functions, which may not hold in real-world applications. To address this issue, we use the bivariate Gaussian process model to characterize the dependence between the objective and constraint functions and developed the constrained expected improvement acquisition function under this model assumption. We show case the performance of the proposed approach with an application to cure process optimization in Manufacturing.
Related papers
- A Novel Unified Parametric Assumption for Nonconvex Optimization [53.943470475510196]
Non optimization is central to machine learning, but the general framework non convexity enables weak convergence guarantees too pessimistic compared to the other hand.<n>We introduce a novel unified assumption in non convex algorithms.
arXiv Detail & Related papers (2025-02-17T21:25:31Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
novel noise-free Bayesian optimization strategies that rely on a random exploration step to enhance the accuracy of Gaussian process surrogate models.
New algorithms retain the ease of implementation of the classical GP-UCB, but an additional exploration step facilitates their convergence.
arXiv Detail & Related papers (2024-01-30T14:16:06Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Online Calibrated and Conformal Prediction Improves Bayesian Optimization [10.470326550507117]
This paper studies which uncertainties are needed in model-based decision-making and in Bayesian optimization.
Maintaining calibration, however, can be challenging when the data is non-stationary and depends on our actions.
We propose using simple algorithms based on online learning to provably maintain calibration on non-i.i.d. data.
arXiv Detail & Related papers (2021-12-08T23:26:23Z) - Are we Forgetting about Compositional Optimisers in Bayesian
Optimisation? [66.39551991177542]
This paper presents a sample methodology for global optimisation.
Within this, a crucial performance-determiningtrivial is maximising the acquisition function.
We highlight the empirical advantages of the approach to optimise functionation across 3958 individual experiments.
arXiv Detail & Related papers (2020-12-15T12:18:38Z) - Real-Time Optimization Meets Bayesian Optimization and Derivative-Free
Optimization: A Tale of Modifier Adaptation [0.0]
This paper investigates a new class of modifier-adaptation schemes to overcome plant-model mismatch in real-time optimization of uncertain processes.
The proposed schemes embed a physical model and rely on trust-region ideas to minimize risk during the exploration.
The benefits of using an acquisition function, knowing the process noise level, or specifying a nominal process model are illustrated.
arXiv Detail & Related papers (2020-09-18T12:57:17Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
Surrogate models have been successfully used in likelihood-free inference to decrease the number of simulator evaluations.
We propose a Deep Gaussian Process (DGP) surrogate model that can handle more irregularly behaved target distributions.
Our experiments show how DGPs can outperform GPs on objective functions with multimodal distributions and maintain a comparable performance in unimodal cases.
arXiv Detail & Related papers (2020-06-18T14:24:05Z) - Randomised Gaussian Process Upper Confidence Bound for Bayesian
Optimisation [60.93091603232817]
We develop a modified Gaussian process upper confidence bound (GP-UCB) acquisition function.
This is done by sampling the exploration-exploitation trade-off parameter from a distribution.
We prove that this allows the expected trade-off parameter to be altered to better suit the problem without compromising a bound on the function's Bayesian regret.
arXiv Detail & Related papers (2020-06-08T00:28:41Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Upper Trust Bound Feasibility Criterion for Mixed Constrained Bayesian
Optimization with Application to Aircraft Design [41.74498230885008]
We adapt the so-called super effcient global optimization algorithm to solve more accurately mixed constrained problems.
We show the good potential of the approach on a set of numerical experiments.
arXiv Detail & Related papers (2020-05-11T12:59:09Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
We use the addition-ality of the objective function into mapping both the kernel and the acquisition function of the Bayesian Optimization.
This ap-proach makes more efficient the learning/updating of the probabilistic surrogate model.
Results are presented for real-life application, that is the control of pumps in urban water distribution systems.
arXiv Detail & Related papers (2020-03-09T15:45:57Z) - Uncertainty Quantification for Bayesian Optimization [12.433600693422235]
We propose a novel approach to assess the output uncertainty of Bayesian optimization algorithms, which proceeds by constructing confidence regions of the maximum point (or value) of the objective function.
Our theory provides a unified uncertainty quantification framework for all existing sequential sampling policies and stopping criteria.
arXiv Detail & Related papers (2020-02-04T22:48:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.