A Decentralized Policy Gradient Approach to Multi-task Reinforcement
Learning
- URL: http://arxiv.org/abs/2006.04338v2
- Date: Fri, 28 May 2021 01:32:18 GMT
- Title: A Decentralized Policy Gradient Approach to Multi-task Reinforcement
Learning
- Authors: Sihan Zeng, Aqeel Anwar, Thinh Doan, Arijit Raychowdhury, Justin
Romberg
- Abstract summary: We develop a framework for solving multi-task reinforcement learning problems.
The goal is to learn a common policy that operates effectively in different environments.
We highlight two fundamental challenges in MTRL that are not present in its single task counterpart.
- Score: 13.733491423871383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a mathematical framework for solving multi-task reinforcement
learning (MTRL) problems based on a type of policy gradient method. The goal in
MTRL is to learn a common policy that operates effectively in different
environments; these environments have similar (or overlapping) state spaces,
but have different rewards and dynamics. We highlight two fundamental
challenges in MTRL that are not present in its single task counterpart, and
illustrate them with simple examples. We then develop a decentralized
entropy-regularized policy gradient method for solving the MTRL problem, and
study its finite-time convergence rate. We demonstrate the effectiveness of the
proposed method using a series of numerical experiments. These experiments
range from small-scale "GridWorld" problems that readily demonstrate the
trade-offs involved in multi-task learning to large-scale problems, where
common policies are learned to navigate an airborne drone in multiple
(simulated) environments.
Related papers
- Learning Multimodal Behaviors from Scratch with Diffusion Policy Gradient [26.675822002049372]
Deep Diffusion Policy Gradient (DDiffPG) is a novel actor-critic algorithm that learns from scratch multimodal policies.
DDiffPG forms a multimodal training batch and utilizes mode-specific Q-learning to mitigate the inherent greediness of the RL objective.
Our approach further allows the policy to be conditioned on mode-specific embeddings to explicitly control the learned modes.
arXiv Detail & Related papers (2024-06-02T09:32:28Z) - HarmoDT: Harmony Multi-Task Decision Transformer for Offline Reinforcement Learning [72.25707314772254]
We introduce the Harmony Multi-Task Decision Transformer (HarmoDT), a novel solution designed to identify an optimal harmony subspace of parameters for each task.
The upper level of this framework is dedicated to learning a task-specific mask that delineates the harmony subspace, while the inner level focuses on updating parameters to enhance the overall performance of the unified policy.
arXiv Detail & Related papers (2024-05-28T11:41:41Z) - Efficient Imitation Learning with Conservative World Models [54.52140201148341]
We tackle the problem of policy learning from expert demonstrations without a reward function.
We re-frame imitation learning as a fine-tuning problem, rather than a pure reinforcement learning one.
arXiv Detail & Related papers (2024-05-21T20:53:18Z) - Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
This paper shows that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design can be sample-efficient.
To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL.
arXiv Detail & Related papers (2024-03-03T22:57:44Z) - Stepsize Learning for Policy Gradient Methods in Contextual Markov
Decision Processes [35.889129338603446]
Policy-based algorithms are among the most widely adopted techniques in model-free RL.
They tend to struggle when asked to accomplish a series of heterogeneous tasks.
We introduce a new formulation, known as meta-MDP, that can be used to solve any hyper parameter selection problem in RL.
arXiv Detail & Related papers (2023-06-13T12:58:12Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Scalable, Decentralized Multi-Agent Reinforcement Learning Methods
Inspired by Stigmergy and Ant Colonies [0.0]
We investigate a novel approach to decentralized multi-agent learning and planning.
In particular, this method is inspired by the cohesion, coordination, and behavior of ant colonies.
The approach combines single-agent RL and an ant-colony-inspired decentralized, stigmergic algorithm for multi-agent path planning and environment modification.
arXiv Detail & Related papers (2021-05-08T01:04:51Z) - Probabilistic Mixture-of-Experts for Efficient Deep Reinforcement
Learning [7.020079427649125]
We show that grasping distinguishable skills for some tasks with non-unique optima can be essential for further improving its learning efficiency and performance.
We propose a probabilistic mixture-of-experts (PMOE) for multimodal policy, together with a novel gradient estimator for the indifferentiability problem.
arXiv Detail & Related papers (2021-04-19T08:21:56Z) - Imitation Learning from MPC for Quadrupedal Multi-Gait Control [63.617157490920505]
We present a learning algorithm for training a single policy that imitates multiple gaits of a walking robot.
We use and extend MPC-Net, which is an Imitation Learning approach guided by Model Predictive Control.
We validate our approach on hardware and show that a single learned policy can replace its teacher to control multiple gaits.
arXiv Detail & Related papers (2021-03-26T08:48:53Z) - Ready Policy One: World Building Through Active Learning [35.358315617358976]
We introduce Ready Policy One (RP1), a framework that views Model-Based Reinforcement Learning as an active learning problem.
RP1 achieves this by utilizing a hybrid objective function, which crucially adapts during optimization.
We rigorously evaluate our method on a variety of continuous control tasks, and demonstrate statistically significant gains over existing approaches.
arXiv Detail & Related papers (2020-02-07T09:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.