Ready Policy One: World Building Through Active Learning
- URL: http://arxiv.org/abs/2002.02693v1
- Date: Fri, 7 Feb 2020 09:57:53 GMT
- Title: Ready Policy One: World Building Through Active Learning
- Authors: Philip Ball and Jack Parker-Holder and Aldo Pacchiano and Krzysztof
Choromanski and Stephen Roberts
- Abstract summary: We introduce Ready Policy One (RP1), a framework that views Model-Based Reinforcement Learning as an active learning problem.
RP1 achieves this by utilizing a hybrid objective function, which crucially adapts during optimization.
We rigorously evaluate our method on a variety of continuous control tasks, and demonstrate statistically significant gains over existing approaches.
- Score: 35.358315617358976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-Based Reinforcement Learning (MBRL) offers a promising direction for
sample efficient learning, often achieving state of the art results for
continuous control tasks. However, many existing MBRL methods rely on combining
greedy policies with exploration heuristics, and even those which utilize
principled exploration bonuses construct dual objectives in an ad hoc fashion.
In this paper we introduce Ready Policy One (RP1), a framework that views MBRL
as an active learning problem, where we aim to improve the world model in the
fewest samples possible. RP1 achieves this by utilizing a hybrid objective
function, which crucially adapts during optimization, allowing the algorithm to
trade off reward v.s. exploration at different stages of learning. In addition,
we introduce a principled mechanism to terminate sample collection once we have
a rich enough trajectory batch to improve the model. We rigorously evaluate our
method on a variety of continuous control tasks, and demonstrate statistically
significant gains over existing approaches.
Related papers
- Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - CostNet: An End-to-End Framework for Goal-Directed Reinforcement
Learning [9.432068833600884]
Reinforcement Learning (RL) is a general framework concerned with an agent that seeks to maximize rewards in an environment.
There are two approaches, model-based and model-free reinforcement learning, that show concrete results in several disciplines.
This paper introduces a novel reinforcement learning algorithm for predicting the distance between two states in a Markov Decision Process.
arXiv Detail & Related papers (2022-10-03T21:16:14Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
We propose a single objective which jointly optimize a latent-space model and policy to achieve high returns while remaining self-consistent.
We demonstrate that the resulting algorithm matches or improves the sample-efficiency of the best prior model-based and model-free RL methods.
arXiv Detail & Related papers (2022-09-18T03:51:58Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Exploration with Multi-Sample Target Values for Distributional
Reinforcement Learning [20.680417111485305]
We introduce multi-sample target values (MTV) for distributional RL, as a principled replacement for single-sample target value estimation.
The improved distributional estimates lend themselves to UCB-based exploration.
We evaluate our approach on a range of continuous control tasks and demonstrate state-of-the-art model-free performance on difficult tasks such as Humanoid control.
arXiv Detail & Related papers (2022-02-06T03:27:05Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.