Proposal for a quantum traveling Brillouin resonator
- URL: http://arxiv.org/abs/2006.04405v1
- Date: Mon, 8 Jun 2020 08:13:00 GMT
- Title: Proposal for a quantum traveling Brillouin resonator
- Authors: Glen I. Harris, Andreas Sawadsky, Yasmine L. Sfendla, Walter W.
Wasserman, Warwick P. Bowen, Christopher G. Baker
- Abstract summary: We propose an on-chip liquid based Brillouin system that is predicted to exhibit ultra-high coherent phonon-photon coupling.
The system is comprised of a silicon-based "slot" waveguide filled with superfluid helium.
Such devices may enable applications ranging from ultra-sensitive superfluid-based gyroscopes, to non-reciprocal optical circuits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brillouin systems operating in the quantum regime have recently been
identified as a valuable tool for quantum information technologies and
fundamental science. However, reaching the quantum regime is extraordinarily
challenging, owing to the stringent requirements of combining low thermal
occupation with low optical and mechanical dissipation, and large coherent
phonon-photon interactions. Here, we propose an on-chip liquid based Brillouin
system that is predicted to exhibit ultra-high coherent phonon-photon coupling
with exceptionally low acoustic dissipation. The system is comprised of a
silicon-based "slot" waveguide filled with superfluid helium. This type of
waveguide supports optical and acoustical traveling waves, strongly confining
both fields into a subwavelength-scale mode volume. It serves as the foundation
of an on-chip traveling wave Brillouin resonator with a single photon
optomechanical coupling rate exceeding $240$kHz. Such devices may enable
applications ranging from ultra-sensitive superfluid-based gyroscopes, to
non-reciprocal optical circuits. Furthermore, this platform opens up new
possibilities to explore quantum fluid dynamics in a strongly interacting
condensate.
Related papers
- Optoacoustic entanglement in a continuous Brillouin-active solid state
system [0.0]
Entanglement in hybrid quantum systems comprised of fundamentally different degrees of freedom is of interest.
We propose to engineer bipartite entanglement between traveling acoustic phonons in a Brillouin active solid state system.
The proposed mechanism presents an important feature in that it does not require initial preparation of the quantum ground state of the phonon mode.
arXiv Detail & Related papers (2024-01-19T12:38:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
Frequency conversion between microwave and optical photons is a key enabling technology to create links between superconducting quantum processors.
We propose a microwave-optical platform based on long-coherence-time superconducting radio-frequency (SRF) cavities.
We show that the fidelity of heralded entanglement generation between two remote quantum systems is enhanced by the low microwave losses.
arXiv Detail & Related papers (2022-06-30T17:57:37Z) - Large Single-Phonon Optomechanical Coupling between Quantum Dots and
Tightly Confined Surface Acoustic Waves in the Quantum Regime [1.7039969990048311]
Small acoustic cavities with large zero-point motion are required for high efficiencies.
We experimentally establish the feasibility of this platform through electro- and opto-mechanical characterization.
We show conversion between microwave phonons and optical photons with sub-natural linewidths.
arXiv Detail & Related papers (2022-05-03T02:53:01Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - All-optical Tuning of Indistinguishable Single-Photons Generated in
Three-level Quantum Systems [0.2642406403099596]
We introduce a coherent driving scheme of a three-level ladder system utilizing Autler-Townes and ac Stark effects by resonant excitation with two laser fields.
We propose theoretically and demonstrate experimentally the feasibility of this approach towards all-optical spectral tuning of single-photon sources.
arXiv Detail & Related papers (2022-01-02T22:58:05Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Quantum coherent microwave-optical transduction using high overtone bulk
acoustic resonances [6.467198007912785]
A device capable of converting single quanta of the microwave field to the optical domain is an outstanding endeavour.
We present a new transduction scheme that could satisfy the requirements for quantum coherent bidirectional transduction.
Our scheme relies on an intermediary mechanical mode, a high overtone bulk acoustic resonance (HBAR), to coherently couple microwave and optical photons.
arXiv Detail & Related papers (2021-02-28T11:45:37Z) - Measurements of a quantum bulk acoustic resonator using a
superconducting qubit [0.0]
Phonons hold promise for quantum-focused applications as diverse as sensing, information processing, and communication.
We describe a piezoelectric quantum bulk acoustic resonator (QBAR) with a 4.88 GHz resonant frequency.
We couple this QBAR resonator to a superconducting qubit on a separate die and demonstrate quantum control of the mechanics in the coupled system.
arXiv Detail & Related papers (2020-12-08T17:36:33Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.