論文の概要: A Variational View on Bootstrap Ensembles as Bayesian Inference
- arxiv url: http://arxiv.org/abs/2006.04548v1
- Date: Mon, 8 Jun 2020 13:01:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 00:30:59.569847
- Title: A Variational View on Bootstrap Ensembles as Bayesian Inference
- Title(参考訳): ベイズ推論としてのブートストラップのバリエーション
- Authors: Dimitrios Milios, Pietro Michiardi, Maurizio Filippone
- Abstract要約: 本稿では,各モデル/粒子がパラメトリックブートストラップと先行の摂動によりデータの摂動に対応するアンサンブルに基づく手法を検討する。
実験により、アンサンブル法がベイズ近似の代替となることが確認された。
- 参考スコア(独自算出の注目度): 24.55506395666038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we employ variational arguments to establish a connection
between ensemble methods for Neural Networks and Bayesian inference. We
consider an ensemble-based scheme where each model/particle corresponds to a
perturbation of the data by means of parametric bootstrap and a perturbation of
the prior. We derive conditions under which any optimization steps of the
particles makes the associated distribution reduce its divergence to the
posterior over model parameters. Such conditions do not require any particular
form for the approximation and they are purely geometrical, giving insights on
the behavior of the ensemble on a number of interesting models such as Neural
Networks with ReLU activations. Experiments confirm that ensemble methods can
be a valid alternative to approximate Bayesian inference; the theoretical
developments in the paper seek to explain this behavior.
- Abstract(参考訳): 本稿では,ニューラルネットワークのアンサンブル法とベイズ推論との接続を確立するために,変分引数を用いる。
本稿では,各モデル/粒子がパラメトリックブートストラップと先行の摂動によりデータの摂動に対応するアンサンブルに基づく手法を検討する。
粒子の最適化ステップによって関連する分布がモデルパラメーターの後方への分岐を減少させる条件を導出する。
このような条件は近似に特別な形式は必要とせず、純粋に幾何学的であり、ReLUアクティベーションを持つニューラルネットワークのような多くの興味深いモデル上でのアンサンブルの挙動についての洞察を与える。
実験により、アンサンブル法は近似ベイズ推論の有効な代替となり得ることが確認された。
関連論文リスト
- Conditional score-based diffusion models for solving inverse problems in mechanics [6.319616423658121]
条件付きスコアベース拡散モデルを用いてベイズ推定を行う枠組みを提案する。
条件付きスコアベース拡散モデルは条件分布のスコア関数を近似する生成モデルである。
メカニクスにおける高次元逆問題に対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2024-06-19T02:09:15Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
本稿では,レノルズ平均Navier-Stokes (RANS) シミュレーションのためのデータ駆動閉包モデルを提案する。
パラメトリック閉包が不十分な問題領域内の領域を特定するために,完全ベイズ的定式化と余剰誘導先行法を組み合わせて提案する。
論文 参考訳(メタデータ) (2023-07-05T16:53:31Z) - Joint Bayesian Inference of Graphical Structure and Parameters with a
Single Generative Flow Network [59.79008107609297]
本稿では,ベイジアンネットワークの構造上の結合後部を近似する手法を提案する。
サンプリングポリシが2フェーズプロセスに従う単一のGFlowNetを使用します。
パラメータは後部分布に含まれるため、これは局所確率モデルに対してより柔軟である。
論文 参考訳(メタデータ) (2023-05-30T19:16:44Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Learning Invariant Representations under General Interventions on the
Response [2.725698729450241]
線形構造因果モデル(SCM)に着目し、不変整合性(IMP)を導入する。
離散環境と連続環境の両方において,本手法の一般化誤差を解析する。
論文 参考訳(メタデータ) (2022-08-22T03:09:17Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
変分ベイズ法はベイズモデルのパラメトリック的および非パラメトリック的側面に対して感性が得られることを示す。
ベイズ感度分析に対する変動的アプローチの理論的および経験的支援を提供する。
論文 参考訳(メタデータ) (2021-07-08T03:40:18Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Posterior-Aided Regularization for Likelihood-Free Inference [23.708122045184698]
後補助正規化(PAR)は,モデル構造に関係なく,密度推定器の学習に適用可能である。
単一のニューラルネットワークを用いて逆KL項と相互情報項の両方を推定するPARの統一推定方法を提供する。
論文 参考訳(メタデータ) (2021-02-15T16:59:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。