論文の概要: MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories
- arxiv url: http://arxiv.org/abs/2106.01808v1
- Date: Thu, 3 Jun 2021 12:59:16 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-04 12:15:38.160835
- Title: MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories
- Title(参考訳): MINIMALIST : サンプル軌道からのアモータイズされた同義語推論のための相互インフォーマトイオンの最大化
- Authors: Giulio Isacchini, Natanael Spisak, Armita Nourmohammad, Thierry Mora,
Aleksandra M. Walczak
- Abstract要約: シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
- 参考スコア(独自算出の注目度): 61.3299263929289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulation-based inference enables learning the parameters of a model even
when its likelihood cannot be computed in practice. One class of methods uses
data simulated with different parameters to infer an amortized estimator for
the likelihood-to-evidence ratio, or equivalently the posterior function. We
show that this approach can be formulated in terms of mutual information
maximization between model parameters and simulated data. We use this
equivalence to reinterpret existing approaches for amortized inference, and
propose two new methods that rely on lower bounds of the mutual information. We
apply our framework to the inference of parameters of stochastic processes and
chaotic dynamical systems from sampled trajectories, using artificial neural
networks for posterior prediction. Our approach provides a unified framework
that leverages the power of mutual information estimators for inference.
- Abstract(参考訳): シミュレーションに基づく推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比、または等価な後方関数の補正推定器を推定する。
本手法はモデルパラメータとシミュレーションデータ間の相互情報最大化の観点から定式化できることを示す。
我々は,この等価性を用いて,既存の推論手法を再解釈し,相互情報の下位境界に依存する2つの新しい手法を提案する。
提案手法は, 後部予測に人工ニューラルネットワークを用いて, サンプル軌道からの確率過程とカオス力学系のパラメータの推測に応用する。
提案手法は,相互情報推定器の力を利用した統合的フレームワークを提供する。
関連論文リスト
- All-in-one simulation-based inference [19.41881319338419]
我々は、現在の制限を克服する新しい償却推論手法、Simformerを提案する。
Simformerは、ベンチマークタスクにおける現在の最先端の償却推論アプローチより優れています。
関数値パラメータを持つモデルに適用することができ、欠落または非構造化データによる推論シナリオを処理でき、パラメータとデータの合同分布の任意の条件をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-04-15T10:12:33Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - On the Relationship Between Variational Inference and Auto-Associative
Memory [68.8204255655161]
本フレームワークでは, 変動推論に対する異なるニューラルネットワークアプローチが適用可能であるかを検討する。
得られたアルゴリズムをCIFAR10とCLEVRの画像データセットで評価し,他の連想記憶モデルと比較した。
論文 参考訳(メタデータ) (2022-10-14T14:18:47Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - How To Train Your Program [0.11421942894219898]
確率的プログラムを用いた機械学習に対するベイズ的アプローチを提案する。
「ここで言う確率的プログラミングの設計パターンとしてのアプローチを「切り株と菌類」と呼ぶ。
論文 参考訳(メタデータ) (2021-05-08T09:26:34Z) - Score Matched Conditional Exponential Families for Likelihood-Free
Inference [0.0]
Likelihood-Free Inference (LFI) はモデルからのシミュレーションに依存する。
モデルからパラメータシミュレーションペアを観測に基づいて独立に生成する。
重みをスコアマッチングで調整したニューラルネットワークを用いて,条件付き指数関数的家族度近似を学習する。
論文 参考訳(メタデータ) (2020-12-20T11:57:30Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - A Semiparametric Approach to Interpretable Machine Learning [9.87381939016363]
機械学習におけるブラックボックスモデルは、複雑な問題と高次元設定において優れた予測性能を示した。
透明性と解釈可能性の欠如は、重要な意思決定プロセスにおけるそのようなモデルの適用性を制限します。
半パラメトリック統計学のアイデアを用いて予測モデルにおける解釈可能性と性能のトレードオフを行う新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-08T16:38:15Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - On Contrastive Learning for Likelihood-free Inference [20.49671736540948]
Likelihood-freeメソッドは、可能性を評価することができるシミュレータモデルでパラメータ推論を行う。
この可能性のない問題の方法の1つのクラスは、パラメータ観測サンプルのペアを区別するために分類器を使用する。
別の一般的な手法のクラスは、パラメータの後方に直接条件分布を適合させ、特に最近の変種はフレキシブルな神経密度推定器の使用を可能にする。
論文 参考訳(メタデータ) (2020-02-10T13:14:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。