論文の概要: Read what you need: Controllable Aspect-based Opinion Summarization of
Tourist Reviews
- arxiv url: http://arxiv.org/abs/2006.04660v2
- Date: Tue, 9 Jun 2020 07:22:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 02:20:19.391592
- Title: Read what you need: Controllable Aspect-based Opinion Summarization of
Tourist Reviews
- Title(参考訳): 必要なものを読む: コントロール可能なアスペクトベースの観光客レビューのオピニオン要約
- Authors: Rajdeep Mukherjee, Hari Chandana Peruri, Uppada Vishnu, Pawan Goyal,
Sourangshu Bhattacharya, Niloy Ganguly
- Abstract要約: オンライン観光レビューからパーソナライズされたアスペクトベースの意見要約を作成するためのソリューションの必要性と提案を議論する。
読者に、興味のある長さや特定の側面など、要約のいくつかの属性を決定し、制御させます。
具体的には、TripAdvisorに投稿された観光レビューからコヒーレントな側面を抽出するための教師なしアプローチを採っている。
- 参考スコア(独自算出の注目度): 23.7107052882747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manually extracting relevant aspects and opinions from large volumes of
user-generated text is a time-consuming process. Summaries, on the other hand,
help readers with limited time budgets to quickly consume the key ideas from
the data. State-of-the-art approaches for multi-document summarization,
however, do not consider user preferences while generating summaries. In this
work, we argue the need and propose a solution for generating personalized
aspect-based opinion summaries from large collections of online tourist
reviews. We let our readers decide and control several attributes of the
summary such as the length and specific aspects of interest among others.
Specifically, we take an unsupervised approach to extract coherent aspects from
tourist reviews posted on TripAdvisor. We then propose an Integer Linear
Programming (ILP) based extractive technique to select an informative subset of
opinions around the identified aspects while respecting the user-specified
values for various control parameters. Finally, we evaluate and compare our
summaries using crowdsourcing and ROUGE-based metrics and obtain competitive
results.
- Abstract(参考訳): 大量のユーザ生成テキストから関連するアスペクトや意見を手作業で抽出するのは、時間がかかります。
一方、要約は、限られた時間予算を持つ読者がデータから重要なアイデアを素早く消費するのに役立つ。
しかし、多文書要約のための最先端のアプローチは、要約を生成する際にユーザの好みを考慮しない。
本研究では,オンライン観光レビューの大規模なコレクションからパーソナライズされたアスペクトベースの意見要約を作成するためのソリューションの必要性と提案を行う。
我々は読者に、興味のある長さや特定の側面など、要約のいくつかの属性を決定し、制御させます。
具体的には,TripAdvisorに投稿された観光レビューからコヒーレントな側面を抽出するために,教師なしアプローチを採用する。
Integer Linear Programming (ILP) に基づく抽出手法を提案し、様々な制御パラメータのユーザ指定値を尊重しながら、識別された側面に関する意見の情報的サブセットを選択する。
最後に,クラウドソーシングとROUGEに基づくメトリクスを用いて要約を評価し比較し,競争結果を得た。
関連論文リスト
- Incremental Extractive Opinion Summarization Using Cover Trees [81.59625423421355]
オンラインマーケットプレースでは、ユーザレビューは時間とともに蓄積され、意見要約を定期的に更新する必要がある。
本研究では,漸進的な環境下での抽出的意見要約の課題について検討する。
本稿では,CentroidRankの要約をインクリメンタルな設定で正確に計算するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-16T02:00:17Z) - Large-Scale and Multi-Perspective Opinion Summarization with Diverse
Review Subsets [23.515892409202344]
SUBSUMMは大規模多視点意見要約のための教師付き要約フレームワークである。
数百のインプットレビューから、プロ、コン、そして検証の要約を生成する。
論文 参考訳(メタデータ) (2023-10-20T08:08:13Z) - Attributable and Scalable Opinion Summarization [79.87892048285819]
我々は、頻繁なエンコーディングを復号することで抽象的な要約を生成し、同じ頻繁なエンコーディングに割り当てられた文を選択して抽出的な要約を生成する。
本手法は,要約プロセスの一部として要約を生成するために使用される文を同定するため,帰属的手法である。
なぜなら、アグリゲーションはトークンの長いシーケンスではなく、潜在空間で実行されるからである。
論文 参考訳(メタデータ) (2023-05-19T11:30:37Z) - Learning Opinion Summarizers by Selecting Informative Reviews [81.47506952645564]
31,000以上の製品のユーザレビューと組み合わせた大規模な要約データセットを収集し、教師付きトレーニングを可能にします。
多くのレビューの内容は、人間が書いた要約には反映されず、したがってランダムなレビューサブセットで訓練された要約者は幻覚する。
我々は、これらのサブセットで表現された意見を要約し、レビューの情報的サブセットを選択するための共同学習としてタスクを定式化する。
論文 参考訳(メタデータ) (2021-09-09T15:01:43Z) - Aspect-Controllable Opinion Summarization [58.5308638148329]
アスペクトクエリに基づいてカスタマイズした要約を生成する手法を提案する。
レビューコーパスを用いて、アスペクトコントローラで強化された(リビュー、サマリ)ペアの合成トレーニングデータセットを作成する。
合成データセットを用いて事前学習したモデルを微調整し、アスペクトコントローラを変更することでアスペクト固有の要約を生成する。
論文 参考訳(メタデータ) (2021-09-07T16:09:17Z) - Hone as You Read: A Practical Type of Interactive Summarization [6.662800021628275]
HAREは、個人的な興味のためにドキュメント要約を最適化するために読者からのフィードバックを使用する新しいタスクです。
このタスクは、長いフィードバックステージに従ってパーソナライズされた要約が生成されるインタラクティブな要約に関連している。
読み上げプロセス中に最小限の侵襲的なフィードバックを収集し、ユーザの関心に適応し、ドキュメントをリアルタイムで拡張することを提案する。
論文 参考訳(メタデータ) (2021-05-06T19:36:40Z) - Multi-Perspective Abstractive Answer Summarization [76.10437565615138]
コミュニティ質問応答フォーラムには、幅広い質問に対する回答の豊富なリソースが含まれている。
マルチパースペクティブな回答要約の目標は、答えのすべての観点を含む要約を作成することである。
本研究は,多視点抽象要約を自動生成する新しいデータセット作成手法を提案する。
論文 参考訳(メタデータ) (2021-04-17T13:15:29Z) - Extractive Opinion Summarization in Quantized Transformer Spaces [52.95867345952894]
抽出的意見要約のための監視されていないシステムであるQuantized Transformer (QT)を提示する。
QTはVector-Quantized Variational Autoencodersにインスパイアされ、人気主導の要約に活用する。
論文 参考訳(メタデータ) (2020-12-08T14:23:46Z) - An Enhanced MeanSum Method For Generating Hotel Multi-Review
Summarizations [0.06091702876917279]
マルチアスペクトマーカ(MAM)をコンテンツセレクタとして使用し、マルチアスペクトでこの問題に対処する。
また,生成した要約の長さを制御する正規化器を提案する。
改良されたモデルでは,元のMeansum法よりも高いROUGE,知覚精度が得られる。
論文 参考訳(メタデータ) (2020-12-07T13:16:01Z) - OpinionDigest: A Simple Framework for Opinion Summarization [22.596995566588422]
このフレームワークは、アスペクトベースの感性分析モデルを使用して、レビューから意見フレーズを抽出し、トランスフォーマーモデルを使用して、これらの抽出から元のレビューを再構築する。
選択された意見は、訓練されたトランスフォーマーモデルへの入力として使用され、それらが意見要約に言語化される。
OpinionDigestは、特定のユーザーのニーズに合わせてカスタマイズされた要約を生成することもできる。
論文 参考訳(メタデータ) (2020-05-05T01:22:29Z) - Interpretable Multi-Headed Attention for Abstractive Summarization at
Controllable Lengths [14.762731718325002]
MLS(Multi-level Summarizer)は、テキスト文書の要約を制御可能な長さで構築するための教師付き手法である。
MLSはMETEORスコアで14.70%の強いベースラインを上回ります。
論文 参考訳(メタデータ) (2020-02-18T19:40:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。