論文の概要: Aspect-Controllable Opinion Summarization
- arxiv url: http://arxiv.org/abs/2109.03171v1
- Date: Tue, 7 Sep 2021 16:09:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-08 16:41:00.560566
- Title: Aspect-Controllable Opinion Summarization
- Title(参考訳): アスペクトコントロール可能な意見要約
- Authors: Reinald Kim Amplayo, Stefanos Angelidis, Mirella Lapata
- Abstract要約: アスペクトクエリに基づいてカスタマイズした要約を生成する手法を提案する。
レビューコーパスを用いて、アスペクトコントローラで強化された(リビュー、サマリ)ペアの合成トレーニングデータセットを作成する。
合成データセットを用いて事前学習したモデルを微調整し、アスペクトコントローラを変更することでアスペクト固有の要約を生成する。
- 参考スコア(独自算出の注目度): 58.5308638148329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work on opinion summarization produces general summaries based on a
set of input reviews and the popularity of opinions expressed in them. In this
paper, we propose an approach that allows the generation of customized
summaries based on aspect queries (e.g., describing the location and room of a
hotel). Using a review corpus, we create a synthetic training dataset of
(review, summary) pairs enriched with aspect controllers which are induced by a
multi-instance learning model that predicts the aspects of a document at
different levels of granularity. We fine-tune a pretrained model using our
synthetic dataset and generate aspect-specific summaries by modifying the
aspect controllers. Experiments on two benchmarks show that our model
outperforms the previous state of the art and generates personalized summaries
by controlling the number of aspects discussed in them.
- Abstract(参考訳): 意見要約に関する最近の研究は、一連の入力レビューとそれらに表される意見の人気に基づいて一般的な要約を生み出している。
本稿では、アスペクトクエリ(ホテルの位置と部屋を記述するなど)に基づいてカスタマイズした要約を生成する手法を提案する。
レビューコーパスを用いて、異なるレベルの粒度で文書のアスペクトを予測するマルチインスタンス学習モデルによって誘導されるアスペクトコントローラに富んだ(レビュー、要約)ペアの合成トレーニングデータセットを作成する。
合成データセットを用いて事前学習したモデルを微調整し、アスペクトコントローラを変更することでアスペクト固有の要約を生成する。
2つのベンチマークによる実験では,本モデルが先行技術よりも優れており,議論されるアスペクトの数を制御して,パーソナライズされた要約を生成することが示された。
関連論文リスト
- Controllable Topic-Focused Abstractive Summarization [57.8015120583044]
制御された抽象的な要約は、特定の側面をカバーするために、ソース記事の凝縮したバージョンを作成することに焦点を当てる。
本稿では,トピックに着目した要約を生成可能なトランスフォーマーアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-12T03:51:38Z) - Towards Personalized Review Summarization by Modeling Historical Reviews
from Customer and Product Separately [59.61932899841944]
レビュー要約(review summarization)は、Eコマースのウェブサイトで製品レビューのメインの考え方を要約することを目的とした、簡単ではないタスクである。
Heterogeneous Historical Review aware Review Summarization Model (HHRRS)を提案する。
我々は、レビュー感情分類と要約を共同で行うマルチタスクフレームワークを採用している。
論文 参考訳(メタデータ) (2023-01-27T12:32:55Z) - Unsupervised Video Summarization via Multi-source Features [4.387757291346397]
ビデオ要約は、オリジナルビデオの本質を伝達するコンパクトだが代表的な視覚的要約を生成することを目的としている。
本稿では,複数の特徴源をチャンクとストライド融合で組み込むことにより,視覚的コンテンツについてより詳細な情報を提供する。
また,TVSumとSumMeの2つのベンチマークを総合的に評価するために,本手法を4つの最先端手法と比較した。
論文 参考訳(メタデータ) (2021-05-26T13:12:46Z) - Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised
Approach [89.56158561087209]
文書に関連する任意の側面を要約する。
監視データがないため、我々は新しい弱い監督構築法とアスペクト・モデリング・スキームを開発した。
実験により,本手法は実文書と合成文書の両方を要約することで,性能の向上を図っている。
論文 参考訳(メタデータ) (2020-10-14T03:20:46Z) - OpinionDigest: A Simple Framework for Opinion Summarization [22.596995566588422]
このフレームワークは、アスペクトベースの感性分析モデルを使用して、レビューから意見フレーズを抽出し、トランスフォーマーモデルを使用して、これらの抽出から元のレビューを再構築する。
選択された意見は、訓練されたトランスフォーマーモデルへの入力として使用され、それらが意見要約に言語化される。
OpinionDigestは、特定のユーザーのニーズに合わせてカスタマイズされた要約を生成することもできる。
論文 参考訳(メタデータ) (2020-05-05T01:22:29Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
オピニオン要約は、複数の文書で表現された主観的な情報を反映したテキストの自動生成である。
本研究では,要約テキストの生成をブートストラップするのには,少数の要約でも十分であることを示す。
提案手法は, 従来の抽出法および抽象法を, 自動的, 人的評価において大きく上回っている。
論文 参考訳(メタデータ) (2020-04-30T15:37:38Z) - Self-Supervised and Controlled Multi-Document Opinion Summarization [16.674646504295687]
そこで本稿では,個々の文書を類似文書の集合のターゲット要約とする自己教師型セットアップを提案する。
制御符号を用いて幻覚の問題に対処する。
グラフベースと最近のニューラル抽象的教師なしモデルに対する2つのデータセットのベンチマークでは,提案手法が優れた品質と妥当性を持つ要約を生成することが示された。
論文 参考訳(メタデータ) (2020-04-30T13:20:18Z) - Unsupervised Opinion Summarization with Noising and Denoising [85.49169453434554]
ユーザレビューのコーパスから合成データセットを作成し、レビューをサンプリングし、要約のふりをして、ノイズのあるバージョンを生成します。
テスト時に、モデルは本物のレビューを受け入れ、健全な意見を含む要約を生成し、合意に達しないものをノイズとして扱います。
論文 参考訳(メタデータ) (2020-04-21T16:54:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。