論文の概要: Learning the Truth From Only One Side of the Story
- arxiv url: http://arxiv.org/abs/2006.04858v2
- Date: Tue, 13 Oct 2020 17:34:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 00:59:03.275118
- Title: Learning the Truth From Only One Side of the Story
- Title(参考訳): 物語の片面だけから真実を学ぶこと
- Authors: Heinrich Jiang, Qijia Jiang, Aldo Pacchiano
- Abstract要約: 一般化線形モデルに焦点をあて、このサンプリングバイアスを調整しなければ、モデルは準最適に収束するか、あるいは最適解に収束しないかもしれないことを示す。
理論的保証を伴って適応的なアプローチを提案し、いくつかの既存手法を実証的に上回っていることを示す。
- 参考スコア(独自算出の注目度): 58.65439277460011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning under one-sided feedback (i.e., where we only observe the labels for
examples we predicted positively on) is a fundamental problem in machine
learning -- applications include lending and recommendation systems. Despite
this, there has been surprisingly little progress made in ways to mitigate the
effects of the sampling bias that arises. We focus on generalized linear models
and show that without adjusting for this sampling bias, the model may converge
suboptimally or even fail to converge to the optimal solution. We propose an
adaptive approach that comes with theoretical guarantees and show that it
outperforms several existing methods empirically. Our method leverages variance
estimation techniques to efficiently learn under uncertainty, offering a more
principled alternative compared to existing approaches.
- Abstract(参考訳): 一方的なフィードバック(すなわち、前向きに予測した例のラベルのみを観察する)の下での学習は、機械学習の基本的な問題である。
それにもかかわらず、サンプリングバイアスの影響を緩和する方法が驚くほど進歩していない。
一般化線形モデルに焦点をあて、このサンプリングバイアスを調整しなければ、モデルが最適に収束するか、あるいは最適解に収束しないかを示す。
理論的な保証を伴う適応的アプローチを提案し,既存の手法を経験的に上回っていることを示す。
提案手法は分散推定手法を利用して不確実性の下で効率よく学習し,既存手法と比較してより原理的な代替手段を提供する。
関連論文リスト
- Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
現在のディープラーニングアプローチは、正確なサンプル確率を生み出す生成モデルに依存している。
この研究は、この制限を解除し、高度に表現力のある潜在変数モデルを採用する可能性を開放する手法を導入する。
我々は,データフリーなコンビネーション最適化におけるアプローチを実験的に検証し,幅広いベンチマーク問題に対して新しい最先端の手法を実現することを実証した。
論文 参考訳(メタデータ) (2024-06-03T17:55:02Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
規範的応用のための予測機械学習モデルをトレーニングするための新しい手法を提案する。
このアプローチは、標準的なトレーニング検証テストスキームの検証ステップを微調整することに基づいている。
合成データを用いたいくつかの実験は、決定論的モデルと実モデルの両方において処方料コストを削減できる有望な結果を示した。
論文 参考訳(メタデータ) (2021-10-22T15:03:20Z) - An Effective Baseline for Robustness to Distributional Shift [5.627346969563955]
ディープラーニングシステムの安全なデプロイには,トレーニング中に見られるものと異なる入力のカテゴリに直面した場合,確実な予測を控えることが重要な要件である。
本論文では, 吸収の原理を用いた分布異常検出の簡便かつ高効率な手法を提案する。
論文 参考訳(メタデータ) (2021-05-15T00:46:11Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Toward Optimal Probabilistic Active Learning Using a Bayesian Approach [4.380488084997317]
アクティブラーニングは、コストの高いラベリングリソースを効率よく効果的に割り当てることで、ラベリングコストを削減することを目的としている。
提案したモデルにおける既存の選択戦略を再構築することにより、どの側面が現在の最先端に包含されていないかを説明することができる。
論文 参考訳(メタデータ) (2020-06-02T15:59:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。