論文の概要: Toward Optimal Probabilistic Active Learning Using a Bayesian Approach
- arxiv url: http://arxiv.org/abs/2006.01732v1
- Date: Tue, 2 Jun 2020 15:59:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 23:37:02.809342
- Title: Toward Optimal Probabilistic Active Learning Using a Bayesian Approach
- Title(参考訳): ベイズアプローチによる最適確率的アクティブラーニングに向けて
- Authors: Daniel Kottke, Marek Herde, Christoph Sandrock, Denis Huseljic, Georg
Krempl, Bernhard Sick
- Abstract要約: アクティブラーニングは、コストの高いラベリングリソースを効率よく効果的に割り当てることで、ラベリングコストを削減することを目的としている。
提案したモデルにおける既存の選択戦略を再構築することにより、どの側面が現在の最先端に包含されていないかを説明することができる。
- 参考スコア(独自算出の注目度): 4.380488084997317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gathering labeled data to train well-performing machine learning models is
one of the critical challenges in many applications. Active learning aims at
reducing the labeling costs by an efficient and effective allocation of costly
labeling resources. In this article, we propose a decision-theoretic selection
strategy that (1) directly optimizes the gain in misclassification error, and
(2) uses a Bayesian approach by introducing a conjugate prior distribution to
determine the class posterior to deal with uncertainties. By reformulating
existing selection strategies within our proposed model, we can explain which
aspects are not covered in current state-of-the-art and why this leads to the
superior performance of our approach. Extensive experiments on a large variety
of datasets and different kernels validate our claims.
- Abstract(参考訳): ラベル付きデータを収集して、優れた機械学習モデルをトレーニングすることは、多くのアプリケーションにおいて重要な課題のひとつです。
アクティブラーニングは、高価なラベリングリソースを効率よく効果的に割り当てることで、ラベリングコストを削減することを目的としている。
本稿では,(1)誤分類エラーの利得を直接最適化する決定論的選択戦略を提案し,(2)不確実性に対処するクラス後部を決定するために,共役事前分布を導入してベイズ的アプローチを用いる。
提案したモデルにおける既存の選択戦略を再構築することにより、どの側面が現在の技術でカバーされていないのか、なぜこのアプローチの優れたパフォーマンスをもたらすのかを説明できる。
さまざまなデータセットと異なるカーネルに関する広範囲な実験が私たちの主張を検証します。
関連論文リスト
- Improve Cost Efficiency of Active Learning over Noisy Dataset [1.3846014191157405]
本稿では,正のインスタンスの取得が負のインスタンスに比べて著しくコストがかかる二項分類の事例について考察する。
本研究では,典型的な不確実性サンプリングよりも広い範囲からサンプルをサンプリングする正規分布サンプリング関数を提案する。
我々のシミュレーションは,提案したサンプリング関数がノイズと正のラベル選択を制限し,20%から32%のコスト効率が異なるテストデータセットよりも向上したことを示している。
論文 参考訳(メタデータ) (2024-03-02T23:53:24Z) - Compute-Efficient Active Learning [0.0]
アクティブラーニングは、ラベルなしデータセットから最も有益なサンプルを選択することでラベリングコストを削減することを目的としている。
従来のアクティブな学習プロセスは、拡張性と効率を阻害する広範な計算資源を必要とすることが多い。
本稿では,大規模データセット上での能動的学習に伴う計算負担を軽減するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T12:32:07Z) - BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
多様な不確実なデータのバランスをとるために適応的なサブプールを構築する新しいフレームワークであるBalancing Active Learning (BAL)を導入する。
我々のアプローチは、広く認識されているベンチマークにおいて、確立されたすべてのアクティブな学習方法より1.20%優れています。
論文 参考訳(メタデータ) (2023-12-26T08:14:46Z) - Learning to Rank for Active Learning via Multi-Task Bilevel Optimization [29.207101107965563]
データ取得のための学習代理モデルを用いて、ラベルのないインスタンスのバッチを選択することを目的とした、アクティブな学習のための新しいアプローチを提案する。
このアプローチにおける重要な課題は、ユーティリティ関数の入力の一部を構成するデータの歴史が時間とともに増大するにつれて、よく一般化する取得関数を開発することである。
論文 参考訳(メタデータ) (2023-10-25T22:50:09Z) - Overcoming Overconfidence for Active Learning [1.2776312584227847]
本稿では,アクティブな学習シナリオで発生する過信の問題に対処する2つの新しい手法を提案する。
1つ目はCross-Mix-and-Mix(CMaM)と呼ばれる拡張戦略で、限られたトレーニング分布を拡張してモデルを校正することを目的としている。
2つ目は Ranked Margin Sampling (RankedMS) という選択戦略である。
論文 参考訳(メタデータ) (2023-08-21T09:04:54Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
提案手法は,コストに配慮した手法と,部分的にラベル付けされたシーンを通じて詳細なサンプル選択を可能にする一般化を導入している。
実世界の大規模自動運転データセットに関する我々の実験は、微粒な選択が知覚、予測、下流計画タスクのパフォーマンスを向上させることを示唆している。
論文 参考訳(メタデータ) (2021-04-08T17:57:41Z) - Cost-Based Budget Active Learning for Deep Learning [0.9732863739456035]
予算に制約のある集団における分類の不確実性やインスタンスの多様性を考慮したコストベースのバグデットアクティブラーニング(CBAL)を提案する。
min-maxに基づく原則的アプローチは、選択されたインスタンスのラベル付けと決定コストを最小化すると考えられる。
論文 参考訳(メタデータ) (2020-12-09T17:42:44Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
両レベル最適化によるデータ要約問題として,本手法を定式化する。
本手法は,ラベル付きサンプルがほとんど存在しない場合,レジーム内のキーワード検出タスクにおいて極めて有効であることを示す。
論文 参考訳(メタデータ) (2020-10-19T16:53:24Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
一般化線形モデルに焦点をあて、このサンプリングバイアスを調整しなければ、モデルは準最適に収束するか、あるいは最適解に収束しないかもしれないことを示す。
理論的保証を伴って適応的なアプローチを提案し、いくつかの既存手法を実証的に上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-08T18:20:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。